

Fielbus Independent I/O Modules

Stepper controller 750-672

Manual

Version 1.0.5

Copyright © 2014 by WAGO Kontakttechnik GmbH \& Co. KG All rights reserved.

WAGO Kontakttechnik GmbH \& Co. KG

Hansastraße 27
D-32423 Minden
Phone: +49 (0) 571/8 $87-0$
Fax: $\quad+49(0) 571 / 887-169$
E-Mail: info@wago.com
Web: http://www.wago.com

Technical Support

Phone: +49 (0) 571/8 $87-555$
Fax: $\quad+49(0) 571 / 887-8555$
E-Mail: support@wago.com

Every conceivable measure has been taken to ensure the correctness and completeness of this documentation. However, as errors can never be fully excluded, we would appreciate any information or ideas at any time.

E-Mail: documentation@wago.com
We wish to point out that the software and hardware terms as well as the trademarks of companies used and/or mentioned in the present manual are generally trademark or patent protected.

Content

1 Important Notes 9
1.1 Legal Bases 9
1.1.1 Copyright 9
1.1.2 Personnel Qualifications 9
1.1.3 Use of the 750 Series in Compliance with Underlying Provisions 10
1.1.4 Technical Condition of Specified Devices 10
1.2 Standards and Guidelines for Operating the 750 Series 11
1.3 Symbols 12
1.4 Safety Information 13
1.5 Font Conventions 14
1.6 Number Notation 14
1.7 Scope 9
2 I/O Modules 16
2.1 Special Modules 16
2.1.1 General Description 16
2.1.1.1 Safety Information 16
2.1.1.2 Structure of Positioning Controller 17
2.1.1.2.1 Control Section 17
2.1.1.2.2 Power Stage. 18
2.1.1.2.3 Drive system 18
2.1.1.2.4 Mechanical Section 19
2.1.1.3 Positioning 20
2.1.1.3.1 Absolute Positioning 20
2.1.1.3.2 Relative Positioning 21
2.1.1.3.3 On-the-Fly Positioning 22
2.1.1.3.4 Referencing 23
2.1.1.3.5 Jogging Mode 24
2.1.1.3.6 Rotary Axis 24
2.1.1.3.7 Types of Acceleration 25
2.1.1.3.7.1 Constant Acceleration 25
2.1.1.3.7.2 Linear Acceleration 26
2.1.1.3.7.3 $\quad \sin ^{2 *} \mathrm{t}$ Acceleration. 27
2.1.1.3.7.4 Adjustable acceleration 28
2.1.1.4 Current Control 30
2.1.1.5 Speed Control 31
2.1.1.6 Camshaft Controller 32
2.1.1.7 Brake Control 33
2.1.1.8 Command Tables 34
3 750-672 [Stepper controller] 36
3.1 View 42
3.2 Connecting Elements 43
3.3 Indicators 44
3.4 Panel 45
3.5 Schematic Diagram 45
3.6 Technical Data 46
3.6.1 Derating 48
3.6.2 Specification of Current 48
3.6.2.1 Setting Motor Nominal Current 48
3.6.2.2 Specification of Current Profile 48
3.7 Process Image 50
3.7.1 Overview. 50
3.7.2 Control Byte, Status Byte 51
3.7.3 Cyclic Process Image 58
3.7.4 Process Image Mailbox 59
3.8 Mailbox Operation 60
3.9 Table Manager 60
3.9.1 Download 62
3.9.2 Control 62
3.10 Configuration. 63
3.10.1 Configuration using Control Byte C2 63
3.10.1.1 Frequency Prescaler 64
3.10.1.2 Acceleration Factor 65
3.10.2 Configuration via Mailbox 66
3.10.2.1 Configuration of Basic Parameters 68
3.10.2.1.1 Application Selection 68
3.10.2.1.2 Prescaler for Maximum Velocity 69
3.10.2.1.3 Factor for Maximum Acceleration 69
3.10.2.1.4 Reference Run 69
3.10.2.1.5 JogMode 70
3.10.2.1.6 Ramps 70
3.10.2.1.7 Scaling Factors 71
3.10.2.1.8 Brake 72
3.10.2.1.9 Hardware/Software Configuration 72
3.10.2.1.10 Current Controller 72
3.10.3 Digital Signals and their Interconnection 73
3.10.4 Linking of Bits 74
3.10.4.1 Special bits ZERO, ONE, MZERO and MONE 77
3.10.4.2 User Bits 78
3.10.4.3 Filters, Low Pass, Timers and Counters 79
3.10.5 Run Commands 84
3.10.6 Scaling, Number Ranges and Units 85
3.10.6.1 Internal Measuring Unit 85
3.10.6.1.1 Time 85
3.10.6.1.2 Path 86
3.10.6.1.3 Velocity 86
3.10.6.1.4 Rotational Speed 86
3.10.6.1.4.1 Calculation via Internal Pulse Frequency 86
3.10.6.1.4.2 Direct Calculation 87
3.10.6.1.5 Acceleration 88
3.10.6.2 External Measuring Units 88
3.10.6.2.1 Path 89
3.10.6.2.2 Velocity 89
3.10.6.2.3 Acceleration 89
3.11 Operating Modes 89
3.11.1 Operation via Cyclic Process Image 89
3.11.1.1 Selecting an Operating Mode 90
3.11.1.2 Exiting an Operating Mode. 90
3.11.1.3 Sequence Diagram for Selection and Ending of Modes 91
3.11.1.4 Single Positioning Operating Mode 92
3.11.1.4.1 Process Image Single Positioning 93
3.11.1.4.2 Single Positioning Sequence Diagram 96
3.11.1.5 Referencing Mode 97
3.11.1.5.1 Referencing Process Image 98
3.11.1.5.2 Sequence Diagram for Referencing 100
3.11.1.5.3 Start Parameters for Referencing Mode 101
3.11.1.6 JogMode and SteppingMode 105
3.11.1.6.1 JogMode and SteppingMode Process Image 105
3.11.1.6.2 JogMode and SteppingMode Sequence Diagram 109
3.11.1.7 Run Program Operating Mode 110
3.11.1.7.1 Run Program Process Image 111
3.11.1.7.2 Sequence Diagram for Run Program 114
3.11.1.7.3 Example of Run Program 115
3.11.1.7.4 Autostart 115
3.11.1.8 Rotary Axis Operating Mode 116
3.11.1.8.1 Relative Positioning 117
3.11.1.8.2 Absolute Positioning 117
3.11.1.9 Camshaft Operating Mode 117
3.11.1.10 Position Table Operating Mode 119
3.11.1.10.1 Teaching of Positions 119
3.11.1.11 Speed Control Operating Mode 119
3.11.1.11.1 Velocity Control Process Image. 121
3.11.2 Move Mode via Mailbox 124
3.11.2.1 Run Commands 124
3.11.3 Limitation of Moving Range 124
3.11.3.1 Hardware, Limit Switch 124
3.11.3.2 Software Limit Switch 125
3.11.4 Control of a Motor Brake 126
3.12 Diagnostics and Errors 128
3.12.1 Error Messages and Evaluation 128
3.12.2 Error Acknowledgement. 128
3.12.3 Internal Data Bus Parameterization: Accumulative Diagnostics 129
3.12.4 Sequence Diagram for Troubleshooting 130
3.12.4.1 Cause of error was eliminated before acknowledgement 130
3.12.4.2 Cause of error was not eliminated before acknowledgement 130
3.13 Diagnostics 131
3.13.1 Internal Status Variables 132
3.13.2 Data Recorder 132
3.14 Installation Instructions 134
3.15 Connection Example 136
3.16 Recommendations to Avoid Overvoltage when Decelerating or Sinking a Vertical Load 137
3.17 Information on Motor Selection 137
3.17.1 Nominal Current 137
3.17.2 Measurement of Motor Inductance 138
3.18 Process Priorities 140
4 Appendix 141
4.1 Calculation Formulas 141
4.1.1 Position 141
4.1.1.1 Full Step Angle 141
4.1.1.2 Rotor Bearing 142
4.1.1.3 Rotary Axis 142
4.1.2 Rotational Speed 142
4.1.2.1 Frequency 142
4.1.2.2 Frequency Prescaler 143
4.1.2.3 Calculation via Internal Pulse Frequency 143
4.1.2.4 Direct Calculation 144
4.1.3 Acceleration 144
4.1.4 Electric Parameters 145
4.1.4.1 Motor Constant 145
4.1.4.2 Supply Voltage 146
4.1.4.3 Current Profile Setting 147
4.1.4.4 Buffer Condenser 147
4.2 Mailbox Commands 148
4.2.1 Overview of Mailbox Commands 148
4.2.2 Overview of Mailbox Commands, Sorted by Opcodes 150
4.2.3 Overview of Mailbox Commands, Sorted by Functions 151
4.2.4 Reference Commands - Mailbox Commands 152
4.2.4.1 General commands 152
4.2.4.1.1 IDLE (0x00) 152
4.2.4.2 Move Commands 153
4.2.4.2.1 DRIVE_COMMAND (0x40) 153
4.2.4.3 Download Commands 154
4.2.4.3.1 DLD_START (0x41) 154
4.2.4.3.2 DLD_CONT (0x42) 157
4.2.4.3.3 DLD_END (0x43) 160
4.2.4.4 Table Management Commands 161
4.2.4.4.1 TABLE ERASE (0x44) 161
4.2.4.4.2 TABLE_COPY (0×45) 163
4.2.4.4.3 TABLE_START (0x46) 166
4.2.4.4.4 TABLE_STOP (0x48) 167
4.2.4.4.5 TABLE_GET_ACTIVE (0x4F) 168
4.2.4.5 Diagnostics Commands 169
4.2.4.5.1 DIAG_RD_ERROR (0x49) 169
4.2.4.5.2 DIAG_QUIT_ERROR (0x4A) 170
4.2.4.5.3 DIAG RD VAR (0x4C) 171
4.2.4.5.4 DIAG RD BIT (0x4D) 172
4.2.4.5.5 DIAG_QUERY_STORAGE (0x4E) 173
4.2.4.6 Configuration Table Commands 174
4.2.4.6.1 CONFIG_SET_PTR (0x50) 174
4.2.4.6.2 CONFIG_WR (0x51) 175
4.2.4.6.3 CONFIG RD (0x52) 176
4.2.4.6.4 CONFIG_SAVE (0×53) 177
4.2.4.6.5 CONFIG_RESTORE (0x54) 178
4.2.4.7 Position table commands 180
4.2.4.7.1 POS_TABLE_CREATE (0x5C) 180
4.2.4.7.2 POS_TABLE_SET_PTR (0x5D) 181
4.2.4.7.3 POS_TABLE_WR (0x5E) 182
4.2.4.7.4 POS_TABLE_TEACH (0x5F) 183
4.3 Commands for Move Mode 185
4.3.1 Overview of Commands for Move Mode 185
4.3.2 Overview of Move Mode Commands, Sorted by Opcodes 188
4.3.3 Overview of Move Mode Commands, Sorted by Function 190
4.3.4 Reference Commands for Move Mode. 193
4.3.4.1 Set point commands 193
4.3.4.1.1 MOVE (0x02) 193
4.3.4.1.2 MOVE_IMMEDIATE (0x03). 194
4.3.4.1.3 MOVE_TABLE (0x04). 195
4.3.4.1.4 MOVE TABLE_IMMEDIATE (0×05) 196
4.3.4.1.5 MOVE_REL (0x06) 197
4.3.4.1.6 MOVE_TABLE_REL (0x08) 198
4.3.4.1.7 SPEED (0x10) 199
4.3.4.1.8 SPEED_IMMEDIATE (0x11) 200
4.3.4.1.9 STOP_FAST (0x18) 201
4.3.4.1.10 STOP_NO_RAMP (0x19) 202
4.3.4.1.11 TORQ (0x1C) 203
4.3.4.1.12 TORQ_IMM (0x1D) 204
4.3.4.1.13 START_REFERENCING (0×20) 205
4.3.4.1.14 SET_ACC_MODE (0×21) 207
4.3.4.1.15 SET_ACC (0x22) 209
4.3.4.1.16 SET_ACC_PARAM_UP (0x23) 210
4.3.4.1.17 SET_ACC_PARAM_DOWN (0x24) 211
4.3.4.1.18 SET_VELOCITY (0x25) 212
4.3.4.1.19 SET_VELOCITY_TARGET (0x2B) 213
4.3.4.1.20 SET_ACTUALPOSITON (0x2E) 214
4.3.4.1.21 SET_ACTUALPOSITION_ZERO (0x2F) 215
4.3.4.1.22 SET_CURRENT (0x39) 216
4.3.4.2 Mathmatic Commands 217
4.3.4.2.1 VAR_SET (0x50) 217
4.3.4.2.2 VAR_INC (0x51) 218
4.3.4.2.3 VAR DEC (0x52) 219
4.3.4.2.4 VAR_ADD (0x53) 220
4.3.4.2.5 VAR_SUB (0x54) 221
4.3.4.2.6 VAR_MUL (0x55) 222
4.3.4.2.7 VAR_COPY (0x56) 223
4.3.4.2.8 VAR_DIV (0x57) 224
4.3.4.3 Wait Commands 225
4.3.4.3.1 WAIT_TIME (0x70) 225
4.3.4.3.2 WAIT_TEST_BIT (0x71) 226
4.3.4.4 Auxiliary commands 227
4.3.4.4.1 WR_BIT (0x78) 227
4.3.4.4.2 NOP (0xF0) 228
4.3.4.4.3 PROG_STOP (0xF1) 229
4.3.4.4.4 PROG_END (0x00 or 0xFF) 230
4.3.4.4.5 GOTO (0xF5) 231
4.3.4.4.6 GOTO_IF (0xF6) 232
4.3.4.4.7 GOTO_IF_NOT (0xF7) 233
4.3.4.4.8 GOTO_LABEL (0xF8) 234
4.3.4.4.9 GOTO_LABEL_IF (0xF9) 235
4.3.4.4.10 GOTO_LABEL_IF_NOT (0xFA) 236
4.3.4.4.11 LABEL (0xFB) 237
4.4 Error Blink Codes 238
4.4.1 Error Codes 1111 through 1999 238
4.4.2 Error Codes 2111 through 2999 238
4.4.3 Error Codes 3111 through 3999 238
4.4.4 Warning Codes 5111 through 5999 239
4.4.5 Signaling 239
4.4.6 Internal Data Bus Parameterization: Accumulative Diagnostics 239
4.4.7 Overview of Error Blink Codes 240
4.5 Bit Field for I/O Driver 255
4.6 Configuration Variables 276
4.7 Internal State Variables 292

1 Important Notes

This section includes an overall summary of the most important safety requirements and notes that are mentioned in each individual section. To protect your health and prevent damage to devices as well, it is imperative to read and carefully follow the safety guidelines.

1.1 Legal Bases

1.1.1 Copyright

This Manual, including all figures and illustrations, is copyright-protected. Any further use of this Manual by third parties that violate pertinent copyright provisions is prohibited. Reproduction, translation, electronic and phototechnical filing/archiving (e.g., photocopying) as well as any amendments require the written consent of WAGO Kontakttechnik GmbH \& Co. KG, Minden, Germany. Non-observance will involve the right to assert damage claims.

WAGO Kontakttechnik GmbH \& Co. KG reserves the right to provide for any alterations or modifications that serve to increase the efficiency of technical progress. WAGO Kontakttechnik $\mathrm{GmbH} \& \mathrm{Co}$. KG owns all rights arising from the granting of patents or from the legal protection of utility patents. Third-party products are always mentioned without any reference to patent rights. Thus, the existence of such rights cannot be excluded.

1.1.2 Personnel Qualifications

The use of the product described in this Manual requires special personnel qualifications, as shown in the following table:

Activity	Electrical specialist	Instructed personnel*)	Specialists**) having qualifications in PLC programming
Assembly	\mathbf{X}	\mathbf{X}	
Commissioning	\mathbf{X}		\mathbf{X}
Programming			\mathbf{X}
Maintenance	\mathbf{X}	\mathbf{X}	
Troubleshooting	\mathbf{X}		
Disassembly	\mathbf{X}	\mathbf{X}	

*) Instructed persons have been trained by qualified personnel or electrical specialists.
**) A specialist is a person, who - thanks to technical training - has the qualification, knowledge and expertise to meet the required specifications of this work and to identify any potential hazardous situation in the above listed fields of activity.

All responsible persons have to familiarize themselves with the underlying legal standards to be applied. WAGO Kontakttechnik GmbH \& Co. KG does not assume any liability whatsoever resulting from improper handling and damage incurred to both WAGO's own and third-party products by disregarding detailed information in this Manual.

1.1.3 Use of the 750 Series in Compliance with Underlying Provisions

Couplers, controllers and I/O modules found in the modular WAGO-I/OSYSTEM 750 receive digital and analog signals from sensors and transmit them to the actuators or higher-level control systems. Using programmable controllers, the signals can also be (pre-)processed.

The components have been developed for use in an environment that meets the IP20 protection class criteria. Protection against finger injury and solid impurities up to 12.5 mm diameter is assured; protection against water damage is not ensured. Unless otherwise specified, operation of the components in wet and dusty environments is prohibited.

1.1.4 Technical Condition of Specified Devices

The components to be supplied Ex Works, are equipped with hardware and software configurations, which meet the individual application requirements. Changes in hardware, software and firmware are permitted exclusively within the framework of the various alternatives that are documented in the specific manuals. WAGO Kontakttechnik $\mathrm{GmbH} \& \mathrm{Co}$. KG will be exempted from any liability in case of changes in hardware or software as well as to noncompliant usage of components.

Please send your request for modified and new hardware or software configurations directly to WAGO Kontakttechnik GmbH \& Co. KG.

1.2 Standards and Guidelines for Operating the 750 Series

Please adhere to the standards and guidelines required for the use of your system:

- The data and power lines shall be connected and installed in compliance with the standards required to avoid failures on your system and to substantially minimize any imminently hazardous situations resulting in personal injury.
- For assembly, start-up, maintenance and troubleshooting, adhere to the specific accident prevention provisions which apply to your system (e.g. BGV A 3, "Electrical Installations and Equipment").
- Emergency stop functions and equipment shall not be made ineffective. See relevant standards (e.g. DIN EN 418).
- The equipment of your system shall be conform to EMC guidelines so that any electromagnetic interferences will be eliminated.
- Operating 750 Series components in home applications without further measures is permitted only if they meet the emission limits (emissions of interference) in compliance with EN 61000-6-3. You will find the detailed information in section "WAGO-I/O-SYSTEM 750" \rightarrow "System Description" \rightarrow "Technical Data".
- Please observe the safety precautions against electrostatic discharge in accordance with DIN EN 61340-5-1/-3. When handling the modules, please ensure that environmental factors (persons, working place and packaging) are well grounded.
- The valid standards and guidelines applicable for the installation of switch cabinets shall be adhered to.

1.3 Symbols

Danger

Always observe this information to protect persons from injury.

Warning

Always observe this information to prevent damage to the device.

Attention

Marginal conditions that must always be observed to ensure smooth and efficient operation.

ESD (Electrostatic Discharge)
Warning of damage to the components through electrostatic discharge. Observe the precautionary measure for handling components at risk of electrostatic discharge.

Note

Make important notes that are to be complied with so that a trouble-free and efficient device operation can be guaranteed.

Additional Information

References to additional literature, manuals, data sheets and internet pages.

1.4 Safety Information

When connecting the device to your installation and during operation, the following safety notes must be observed:

Danger

The WAGO-I/O-SYSTEM 750 and its components are an open system. It must only be assembled in housings, cabinets or in electrical operation rooms. Access is only permitted via a key or tool to authorized qualified personnel.

Danger

All power sources to the device must always be switched off before carrying out any installation, repair or maintenance work.

Warning

Replace defective or damaged device/module (e.g. in the event of deformed contacts), as the functionality of field bus station in question can no longer be ensured on a long-term basis.

Warning

The components are not resistant against materials having seeping and insulating properties. Belonging to this group of materials is: e.g. aerosols, silicones, triglycerides (found in some hand creams). If it cannot be ruled out that these materials appear in the component environment, then the components must be installed in an enclosure that is resistant against the above mentioned materials. Clean tools and materials are generally required to operate the device/module.

Warning

Soiled contacts must be cleaned using oil-free compressed air or with ethyl alcohol and leather cloths.

Warning

Do not use contact sprays, which could possibly impair the functioning of the contact area.

Warning

Avoid reverse polarity of data and power lines, as this may damage the devices.

ESD (Electrostatic Discharge)

The devices are equipped with electronic components that may be destroyed by electrostatic discharge when touched.

Warning
For components with ETHERNET/RJ-45 connectors:
Only for use in LAN, not for connection to telecommunication circuits.

1.5 Font Conventions

italic	Names of paths and data files are marked in italic-type. e.g.: C: \mid Programs $\mid W A G O-I O-C H E C K$		
italic	Menu items are marked in italic-type, bold letters. e.g.: Save		
END	A backslash between two names characterizes the selection of a menu point from a menu. e.g.: File \backslash New		
Pushbuttons are marked as bold with small capitals			
e.g.: EnTER		\quad	Keys are marked bold within angle brackets
:---			
e.g.: <F5>			

1.6 Number Notation

Number code	Example	Note
Decimal	100	Normal notation
Hexadecimal	0×64	C notation
Binary	$' 100^{\prime}$ $' 0110.0100^{\prime}$	In quotation marks, nibble separated with dots (.)

1.7 Scope

This manual describes the Special Module 750-672 Stepper controller of the modular WAGO-I/O-SYSTEM 750.

Handling, assembly and start-up are described in the manual of the Fieldbus Coupler. Therefore this documentation is valid only in the connection with the appropriate manual.

2 I/O Modules

2.1 Special Modules

2.1.1 General Description

2.1.1.1 Safety Information

Observe the following information and notices to prevent injury and damage to persons and equipment.

Danger

Take appropriate measures, such as cordoning off appropriate areas with screens/enclosures, to prevent bodily contact with the system's moving parts.

Danger

Enact and install an EMERGENCY OFF procedure and system that adheres to locally valid regulations and applicable engineering practices.

Note

Install appropriate hardware limit switches that can directly disengage power to the system if a restricted area of movement has been breached.

Note

Install appropriate equipment to protect motors and power electronics, such as motor circuit breakers or fuses.

2.1.1.2 Structure of Positioning Controller

The following figure illustrates the structure of a typical positioning controller, along with the basic elements:

- Control section,
- Power section,
- Drive,
- Mechanical section.

Fig. 2.1.1-1: Structure of position control system

2.1.1.2.1 Control Section

The control section consists of the PLC for process control and the stepper module $750-67 \mathrm{x}$ for positioning, FM and PWM functions.

2.1.1.2.2 Power Stage

The power stage generates the requisite drive currents from the pulses for the specific motor. Any type of output stage equipped with a pulse direction or incremental encoder interface can be used with the stepper module 750-670. This also allows output stages for 3- or 5-pole stepper motors or DC or AC servo motors to be used. Stepper modules 750-671, -672 and -673 are equipped with an integrated output stage for regulating 2-phase stepper motors.

2.1.1.2.3 Drive system

Stepper motors are simple and economical drives for high-precision tasks for the most varying of applications.

The shaft of a stepper motor rotates by a defined angle at each pulse; a rapid succession of pulses transforms this stepping motion into a continuous turning motion. The natural resonance of stepper motors is greatly suppressed in particular by extremely smooth running produced through microstepping at high resolution, as used in the WAGO modules 750-671, -672 and -673, with 64 -fold microstepping.

The figures below illustrate possible types of connections for stepper motors.

Fig. 2.1.1-2: Types of connections for stepper motors

6-wire-motor bipolar in series operated

8-wire-motor bipolar parallel operated

In addition to the type of connection and the number of phases, the requisite torque progression over speed, along with the motor current necessary for this and the winding resistance and the motor inductance must also be taken into account when selecting an appropriate motor.

The torque progression and speed are dictated by the application to be implemented. Practical experience has shown that a torque margin of approximately 25%, depending on the mechanical system properties, has proven useful. This should be taken into consideration to account for any dynamic effects (resonance in mechanical systems).

The positioning process sequences also determines the average and peak power supplied to the motor; special attention must be given here to the total power loss and temperature of the motor.

Depending on the motor model and design, a corresponding current must be present that must be transferred from the output stage into the motor. The voltage required for this depends on the winding resistance, motor inductance and speed (anti-EMC). It may therefore be necessary to have considerably higher voltage levels for the specific current level, in particular at high speeds, than that specified by the motor data. The motor data provided by the manufacturers is based on motor standstill (ohmic winding resistance). As the power output stages of the stepper modules 750-671, -672 and -673 are equipped with power control systems, it is no problem, for example, to run 12 V motors with 24 V supply systems, as long as the current, power loss and temperature of the motor remain within acceptable limits. Consult the motor manufacturer if you have any doubts or questions.

2.1.1.2.4 Mechanical Section

The requisite motor data can be calculated based on the requirements concerning the load to be moved, and any additional bearings, transmissions, deflection systems, damping elements, etc. that may be required. Important parameters to consider are: moment of inertia, starting torque holding torque torque at the maximum required speed cycle times for positioning requisite acceleration required torque (where applicable) when passing through mechanical resonance fields - particularly when mechanical components such as long drive belts, spring elements or vibration buffers (couplings) are used. There must be no step losses if the requisite mechanical torque does not exceed the torque supplied by the motor (taking into account its own inertia)!

2.1.1.3 Positioning

A distinction is made here between absolute and relative positioning. In addition, a difference is also made between a reference run and the Jog mode.

2.1.1.3.1 Absolute Positioning

Positioning from the absolute position X to absolute position Y .

Fig. 2.1.1-3: Absolute positioning
Potential applications:

- Positioning shafts
- Transfer carriages
- Pick \& Place

2.1.1.3.2 Relative Positioning

Positioning from absolute position X to absolute position Y by the difference x . Also possible as a command during positioning (on the fly).

Fig. 2.1.1-4: Relative positioning
Potential applications:

- Incremental dimensions
- Variable reference points

2.1.1.3.3 On-the-Fly Positioning

Termination of ongoing positioning (such as Move to Y) and execution of the new positioning command (Move to Y-n).

Fig. 2.1.1-5: On-the-fly positioning
Potential applications:

- Event-dependent changing of target position
- Avoidance of collisions
- Process optimization

2.1.1.3.4 Referencing

Referencing is the setup of a measuring system. A distinction is drawn here between referencing to a limit switch and referencing to a special reference switch. A high degree of reproducible accuracy is essential for referencing. Referencing should therefore always be performed from the same end.

Referencing involves searching for the reference switch at the set setup speed and then moving toward that point from the correct end from any position with the movement range.

Fig. 2.1.1-6: Referencing
The reference value (usually 0) is accepted at the corresponding edge.

2.1.1.3.5 Jogging Mode

The drive is run at the setup speed via a defined input, or a control bit, as long as the input is active, or as long as the bit is set. A time limit can be activated for the moving process.

2.1.1.3.6 Rotary Axis

The value range (such as $-10000 \ldots+10000$) is converted for rotation $\left(360^{\circ}\right)$ around a real or virtual axis for a rotary axis. Overrun is taken into account automatically here, i.e. when 360° is exceeded, counting is restarted at 0°. Based on the example values, after exceeding the +10000 position, the next position would be -10000 .

When specifying the parameters for the rotary axis, the following restriction must be observed for the function to be implemented correctly.

$$
v \leq \frac{\text { Speed_Div }}{\text { Speed_Mult }} * \frac{\text { Freq_Div }}{80} * 10^{3} * p
$$

v	Maximum allowed setpoint speed
p	Rotary axis periods (parameter 64, Rotary_Axis_Period) Speed_Mult Scaling factor for setpoint speed (parameter 28 from configuration table)
Speed_Div	Scaling factor for setpoint speed (parameter 30 from configuration table)
Freq_Div	Prescaler for maximum speed (parameter 4 from configuration table)

Potential applications:

- Belt control
- Label supply
- Control of rotary tables

2.1.1.3.7 Types of Acceleration

2.1.1.3.7.1 Constant Acceleration

Acceleration has the same value during the entire acceleration phase. Both the onset and completion of acceleration phase jolt the mechanical system; this phenomenon is comparable to the jolt a vehicle experiences when stepping on/stepping off the accelerator.

Fig. 2.1.1-7: Constant acceleration
Potential applications:

- Peak acceleration at specified acceleration value,
- Linear path/time response.

2.1.1.3.7.2 Linear Acceleration

Acceleration increases and decreases during the acceleration phase with a linear gradient.
This reduces the jolt experienced by the mechanical system.

Fig. 2.1.1-8: Linear acceleration
Potential applications:

- Soft start (jolt reduction)
- Less risk of step losses
- Linear (constant) acceleration moment
- Maximum acceleration, in particular with flexible drive systems (belts)

2.1.1.3.7.3 $\sin ^{2 *} t$ Acceleration

The acceleration value progresses in accordance with a $\sin ^{2 *}$ t curve during the acceleration phases.
This minimizes the jolt experienced by the mechanical system. This reduces any remaining harmonic waves still present during linear acceleration.

Fig. 2.1.1-9: $\sin ^{2 *} t$ acceleration
Potential applications:

- Soft start (jolt reduction)
- Less risk of step losses
- Maximum acceleration, in particular with flexible drive systems (belts)

2.1.1.3.7.4 Adjustable acceleration

The acceleration and brake ramps can be adjusted individually.

Fig. 2.1.1-10: Adjustable acceleration
g067×28e
Possible application, e.g.:

- Defining if the acceleration must be done with or against additional external torques
- Asymmetric retaining forces of toolings (grippers)

The acceleration can be defined as

- Acceleration time
- Acceleration path or
- Acceleration (steps $/ \mathrm{s}^{2}$)

Potential applications:

- Cycle-time dependent applications
- Simple path calculation
- Definition of acceleration torques

2.1.1.4 Current Control

The current is dependent on:

- Acceleration
- Constant speed
- Delay
- Stop (holding torque)

The current can be set as a $\%$ of the nominal value.
Values up to 150% are possible (boost)!

Fig. 2.1.1-11: Current control
g067x31e
Potential applications:

- Power loss limitation
- Torque control

2.1.1.5 Speed Control

The rotational speed is regulated by speed control. Achieving a specified position is not relevant here.

Potential applications:

- Simple interfaces for ready-made application programs
- Belt drives, conveyor systems

2.1.1.6 Camshaft Controller

The camshaft controller allows to set an output or bits in a position window. The position window can be defined absolutely or relatively:

- Set output/bit from Xn to Yn
- Set output/bit from Xn on for $\Delta \mathrm{Yn}$

Fig. 2.1.1-12: Camshaft controller
g067×32e
Potential applications:

- Setting of glue dots
- Length feeding
- Stamp positions
- Tool operation

2.1.1.7 Brake Control

Brake OFF (Output=1) Δt Off before start of positioning.
Brake ON (Output=0) Δt On before reaching target position.
If the brake was switched on, the execution of the next positioning is delayed by Δ tOff.

Fig. 2.1.1-13: Brake control
Potential applications:

- Lifting axis
- Parking brakes

2.1.1.8 Command Tables

In the command tables, a complex positioning sequence can be stored and executed independently according to the appropriate sequential list of individual commands.

The command sequence can be changed or stopped depending on external or internal (PLC) events.

The operating mode possibilities are:

- Cyclic (repeats after end of list)
- Event controlled (digital, analog, time)
- Direct addressing
- Skipping to other entries in list

Two tables are available that can alternately be switched over: An offline table (program run) and an online table (program up-/download).

Fig. 2.1.1-14: Command tables
Potential applications:

- Relieving the PLC
- Reduction of response times
- Encapsulating the application

3 750-672 [Stepper controller]

The intelligent 750-672 stepper controller has an on-board power driver designed to control 2-phase stepper motors up to $70 \mathrm{~V} / 7.5 \mathrm{~A}$.
The 64 times microstepping prevents step losses due to resonance in the acceleration phases and prevents excessive wear on mechanical parts. Adjustable current limits for stop, acceleration and constant speed help minimize motor power dissipation.

Six configurable inputs for start/stop, end-stop, reference, jog/tip, etc., can be directly processed by the internal software without delay.

Two outputs can be linked with internal functions or used freely.
Versatile functions, such as positioning with different acceleration slopes, command tables, camshaft controller, auto referencing and other eventdependent properties provide this controller with a wide spectrum of possible uses

The programmer's interface is the same for all WAGO stepper controller modules.

Various applications are implemented in the 750-672 stepper controller.

- Positioning,
- Speed Control

WAGO-I/O-SYSTEM 750
I/O Modules

Fig. 2.1.1-1: Stepper controller applications and operating modes
There are five operating modes available in each of the applications Positioning and Velocity Control:

- Positioning/speed parameter
- Referencing,
- Jog Mode,
- Move command via Mailbox,
- Run program.

The stepper controller function is defined by various tables, with the configuration table and the Bit I/O table playing a particularly important role.

Fig. 2.1.1-2: Tables in the stepper controller
The stepper module has six digital 24 V inputs: DI $1+$ and DI $6+$. The inputs are electrically isolated, and each has the reference potential DI 1through DI 6-.
This allows sensors and switches to be connected in two transmission systems.
In the standard application, the inputs have the following meaning:
DI 1 Enable input
DI 2 Reference input
DI 3 Jogging in positive direction
DI 4 Jogging in negative direction
DI 5 Limit switch in positive direction has been actuated
DI 6 Limit switch in negative direction has been actuated
For particular applications, other function can be assigned to these inputs.
The positive switching outputs DO 1 and DO 2 are short-circuit proof and can be loaded with up to 0.5 A .

In the standard application, the outputs have the following meaning:
DO 1 Target position has been reached
DO 2 An error has occurred
For particular applications, other function can be assigned to these outputs.
Corresponding entries in the configuration table refer to the bit table, which contains all internal function-relevant bits.

In addition, the stepper module has connections for motor windings.
The windings are connected to the contacts $M_{-} 1 A-M _1 B$ and $M _2 A-M _2 B$.

Fig. 2.1.1-3: Stepper controller connections
g067205e
Connecting in series is required if the nominal current of a part winding is smaller than the medium operating current.
Otherwise, the motor windings should be switched parallel.
Faulty operating states, such as a short circuit in the motor windings or overheating in the output stage, are detected and signaled.

WAGO shielding clamping brackets must be used to connect the shielding of the motor circuit to the rail.

LEDs signal both the signal state of the digital inputs and outputs and the state of the voltage supply.
Four additional LEDs display the module's operating mode.
Field and system levels are electrically isolated.
Individual I/O modules can be arranged in any combination when configuring the fieldbus node. An arrangement in groups is not necessary.

A 24 V voltage supply is required to supply power to the internal logic. This voltage supply shares the same ground as the UDC motor voltage.

The UDC motor voltage is not protected against reverse polarity. WAGO Series 281 and 282 fuse terminals are available for fuse protection.

Note

Only operate the module with 24 V DC PELV (Protective Extra Low Voltage) or SELV (Safety Extra Low Voltage) power sources. Using a higher voltage (motor voltages up to 70 V) puts you at risk of electric shock.

The stepper controller can be operated at the following WAGO I/O SYSTEM 750 couplers and controllers:

Bus system	Coupler/Controller	Item No.	Hardware vers.	Software vers.	Max. number of modules
ETHERNET TCP/IP	Fieldbus coupler	750-341	03	06	8
		750-342	04	17	3
	Programmable fieldbus controller	750-841	03	17	16
		750-842	04	12	8
		750-843	12	01	8
		750-871	03	05	16
		750-873	02	02	16
CANopen	Fieldbus coupler	750-337	09	10	8
		750-338	02	16	8
	ECO Fieldbus coupler	750-347	01	04	1
		750-347	01	06	2
		750-348	01	04	1
		750-348	01	06	2
	Programmable Fieldbus controller	750-837	07	12	8
		750-838	02	12	8
DeviceNet	Fieldbus coupler	750-306	12	4J	8
	ECO Fieldbus coupler	750-346	02	07	2
	Programmable fieldbus controller	750-806	04	09	8
LON	Fieldbus coupler	750-319	xx	05	3
	Programmable fieldbus controller	750-819	xx	09	8
PROFIBUS	Fieldbus coupler	750-303	xx	from 08	3
		750-333	12	from 07	8
	ECO Fieldbus coupler	750-343	03	from 06	2
	Programmable fieldbus controller	750-833	16	10	8
Powerlink	Fieldbus coupler	750-350	07	01	8
BACnet	Programmable fieldbus controller	750-830	01	01	8
KNX	Programmable fieldbus controller	750-849	xx	04	16
SERCOS III	Feldbuskoppler	750-351	02	03	08

WAGO-I/O-SYSTEM 750
I/O Modules

Bus system	Coupler/Controller	Item No.	Hard- ware vers.	Soft- ware vers.	Max. number of modules
	IPC	$758-870 /$ $000-\mathrm{xxx}$	10	03	16
	IPC	$758-874 /$ $000-\mathrm{xxx}$	10	03	16
	IPC	$758-875 /$ $000-\mathrm{xxx}$	10	03	16
	IPC	$758-876 /$ $000-\mathrm{xxx}$	10	03	16

Other couplers/controllers upon request

Note

The following must be observed when using the stepper module with CANopen bus couplers 750-337, 750-338, 750-837, 750-838, 750-347 and 750-348:
In the default configuration the stepper module data are mapped in consecutive PDOs. Each PDO can take up eight bytes of data. The 12-byte process image for the stepper module contains 2 PDOs, one with 8 and one with 4 bytes.

Problem:

The specified and actual values for the positioning data is distributed among 2 PDOs during positioning using the cycling process image, which could result in the data not being transferred consistently.

Remedy:

- For positioning via Mailbox mode, the mailbox data is consistently transferred in PDO1 and the control bits in PDO2.
- Use of 16-bit specified/actual values
or
- Omission of "on-the-fly" specified/actual values; i.e., initiation of the function only after setting of the specified values or reading out of the 24-bit actual values has been fully completed and only in the "Standstill" status.

3.1 View

Fig. 2.1.1-1: View

No.	Designation	Meaning	For details see chapter
1	---	Marking options using the Mini-WSB	---
2	A ... F	LED Status A: Error; B: Operation; C: Run program active; D: Enable; E: Control voltage; F: Motor voltage	3.3 „Indicators"
3	---	Data contacts	
4	G ... N	LED Status G: Output 1; H: Output 2; I: Input 1; J: Input 2; K: Input 3; L: Input 4; M: Input 5; N: Input 6	3.3 „Indicators"
5	---	Releasing strap	
6	$1 . .8$	CAGE CLAMP ${ }^{\circledR}$ X2 Connections 1: Motor winding M_1A, 2: Motor winding $\mathrm{M}_{-}^{-} 1 \mathrm{~B}$; 3: Motor winding M_2A; 4: Motor winding M_2B; 5: Motor voltage UDC; 6: Motor voltage 0 V ; 7: Control voltage 0 V ; 8: Control voltage +24 V	3.2 „Connecting Elements"
7	$1 \ldots 16$	CAGE CLAMP ${ }^{\circledR}$ X1 connections 1 ... 16: Output DO $1+\ldots$ input DI 6-	3.2 „Connecting Elements"

WAGO-I/O-SYSTEM 750
I/O Modules

3.2 Connecting Elements

Connec -tor	Designation	Name	Standard configuration *)
X2 1	M_1A	Motor winding 1	
X2 2	M_1B	Motor winding 1	
X2 3	M_2A	Motor winding 2	
X2 4	M_2B	Motor winding 2	
X2 5	UDC	Motor supply	Nominal voltage 55 V DC
X2 6	0 V	Motor supply	Ground
X2 7	0 V	Control voltage	Ground
X2 8	24 V	Control voltage	Nominal voltage 24 V DC
X1 1	DO 1+	Digital output 1	Target position has been reached *)
X12	DO 0 V	Digital output	
X13	DO 2+	Digital output 2	An error has occurred *)
X14	DO 0 V	Digital output	
X1 5	DI 1+	Digital input 1+	Enable input Stop1_N *)
X17	DI 2+	Digital input $2+$	Reference input Set_Reference *)
X19	DI 3+	Digital input 3+	Jogging in positive direction Jog_Pos *)
X1 11	DI 4+	Digital input 4+	Jogging in negative direction Jog_Neg *)
X1 13	DI 5+	Digital input 5+	Limit switch in positive direction has been actuated LimitSwitch_Pos *)
X1 15	DI 6+	Digital input 6+	Limit switch in negative direction has been actuated LimitSwitch_Neg *)
$\begin{gathered} \mathrm{X} 16, \\ 8 \ldots 16 \end{gathered}$	DI 1- ... DI 6-	Digital input $1-\ldots 6-$	0 V for DI 1+ ... DI 6+

*) The given configuration applies only to standard applications. Adaptation for other applications is described in the corresponding sections.

3.3 Indicators

	LED	Link	Designation	Status	Function
			Write access to	Flashing $10 \mathrm{~Hz} /$ red	Write access to EEPROM
			Error code Group error	Blink code/ Red	Group error/warning Error message or warning issued
Fig. 2.1.1-1: Indicators g067202x	B	Busy	Busy		The selected operating mode is active and not yet finished. It is possible that the operating mode was cancelled.
			Positioning	Off	Positioning not active, drive motionless
				Yellow	Positioning active, drive in operation
			$\begin{aligned} & \text { Run } \\ & \text { program } \end{aligned}$	Off	Run program not active.
				Yellow	Run program active
			Referencing	Off	Referencing not active, drive motionless
				Yellow	Referencing active, drive in operation
			JogMode	Off	JogMode not active.
				Yellow	JogMode active; motor has been started using Input3 (Jog_Pos) or Input4 (Jog_Neg). LED flashes briefly
			Mailbox mode	Off	Mailbox active, but no command active, drive motionless
				Yellow	Mailbox and command active, drive in operation
			Rotational speed control	Off	The "Busy" LED has no function in this operating mode.
				Yellow	The "Busy" LED has no function in this operating mode
	C	M Program ACK	$\begin{aligned} & \text { Run } \\ & \text { program } \end{aligned}$	Off	No Run program being processed
				Yellow	A run program is in process.
	D	Stop_N _ACK	Drive stop inverted	Off	The bit Stop1_N or Stop2_N is 0. In addition, the motor is at standstill and frequency output is 0 . Startup using Start is not possible.
				Green	The bits Stop1_N and Stop2_N are both set to 1 , or the drive is braking the unit.
	E		24 V	Off	Field supply logic missing.
				Green	Field supply logic present.
	F		Motor supply	Off	Motor supply missing.
				Green	Motor supply present.

WAGO-I/O-SYSTEM 750 I/O Modules

	LED	Link	Designatio	Status	Function
	G	On Target	$\begin{aligned} & \text { Status } \\ & \text { DO } 1 \end{aligned}$	Off	Target position has been reached.
				Green	Target position has not been reached.
	H	Error	$\begin{aligned} & \text { Status } \\ & \text { DO } 2 \end{aligned}$	Off	No error present.
\checkmark				Green	An error has occurred.
\bigcirc	I	Fixed	Status DI 1	Off	Input DI 1: Signal level (0)
				Green	Input DI 1: Signal level (1)
σ°	J	Fixed	Status DI 2	Off	Input DI 2: Signal level (0)
$\stackrel{7}{1}$				Green	Input DI 2: Signal level (1)
\cdots	K	Fixed	Status DI 3	Off	Input DI 3: Signal level (0)
$\frac{\square}{\square}$				Green	Input DI 3: Signal level (1)
	L	Fixed	Status DI 4	Off	Input DI 4: Signal level (0)
$750-672$				Green	Input DI 4: Signal level (1)
2.1.1-2: Indicators	M	Fixed	Status DI 5	Off	Input DI 5: Signal level (0)
8067205x				Green	Input DI 5: Signal level (1)
	N	Fixed	Status DI 6	Off	Input DI 6: Signal level (0)
				Green	Input DI 6: Signal level (1)

3.4 Panel

The 750-672 stepper controller is not equipped with any operating elements. The configuration and the parameters can be changed via higher-level control or the WAGO-I/O-CHECK configuration tool.

3.5 Schematic Diagram

Fig. 2.1.1-1: Schematic circuit diagram

g067201e

3.6 Technical Data

inputs	
Number of inputs	6 (DI 1+ ... DI 6+)
Input voltage	DC -3V... 30 V
Signal voltage (0)	DC $-3 \mathrm{~V} \ldots+5 \mathrm{~V}$
Signal voltage (1)	DC $15 \mathrm{~V} \ldots 30 \mathrm{~V}$
Input current typ.	2.8 mA
Input filter	$\begin{aligned} & 100 \mu \mathrm{~s} * \\ & (* \text { software filter can be installed }) \end{aligned}$
Input characteristic	Acc. to EN61131-2 Model 1
Function Inputs	DI 1 Enable input DI 2 Reference input DI 3 Jog input, positive direction DI 4 Jog input, negative direction DI 5 Limit switch, positive direction DI 6 Limit switch, negative direction The inputs can be freely reconfigured.
Galvanic isolation	775 V DC among each other and against I/O module 1570 V DC against control voltage and motor voltage.
Outputs	
No. of outputs	2 (DO 1, DO 2)
Output rated current	0.5 A , short-circuit protected
Load types	- Resistive load - Inductive load, max. 2H - Lamps
Switching frequency max.	5 Hz , inductive load acc. to IEC947-5-1, DC13
Function Outputs	Preset: DO 1: Target reached DO 2: Error; the outputs can be freely reconfigured
Galvanic isolation	1570 V DC in countercurrent with I/O module and digital inputs
Module-Specific Data	
Motor Connection	
Number of outputs	1 stepper motor (2 phases)
Output current	2×7.5 A temporary (smaller 10 s); 2×5.0 A nominal current; Continuous operation: derating $0.1 \mathrm{~A} / \mathrm{K} 50^{\circ} \mathrm{C}$ and above
Max. stepper frequency	7812 Hz full step

WAGO-I/O-SYSTEM 750
I/O Modules

Diagnostics		Short circuit or ground fault overcurrent Overtemperature monitoring Supply voltage monitoring Motor wire break Wrong rotational direction incremental encoder motor
Resolution		64 microsteps per full step.
Protective functions		- Short circuit in motor windings is allowed - Short circuit in motor windings approximating 0 V or UZK motor voltage is allowed - Reverse polarity of +24 V control voltage is allowed - Reverse polarity of UZK motor voltage is not allowed
Galvanic isolation		1570 V DC to I/O module and digital inputs
Type of cable		E.g., LAPP UNITRONIC LIYCY $4 * 0.75 \mathrm{~mm}^{2}$
Cable length		max. 30 m
Shield connector		both sides
Supply Connections		
Power supply	System voltage	via I/O module (5 V DC) Current consumption: 65 mA typ.
	Control voltage output $24 \text { V DC }$	$24 \text { V DC (-25 \% ... +30 \%) }$ Current consumption 90 mA typ. without ventilator 120 mA typ. with ventilator External fuse protection: Fuse 3.15 A M (medium slow) Fusing integral $\leq 20 \mathrm{~A}^{2} \mathrm{~s}$
	Motor voltage 70 V UZK	55 V DC nominal voltage Operating range of 18 ... 70 V DC Current consumption 0 mA for deactivated output stage External fuse protection: Fuse 10 A FF (super quick) Fusing integral $\leq 22 \mathrm{~A}^{2} \mathrm{~s}$
Data width		
Data width, internal		12 bytes input/output
Acyclic data		6 bytes mailbox overlapping
Cyclic data		3 bytes control information, 7 bytes data
Mechanical Data		
Dimensions W x H* x D (* from upper edge of rail)		$51 \mathrm{~mm} \times 70 \mathrm{~mm} \times 100 \mathrm{~mm}$
Weight		approx. 160 g

Standards and directives (see chapter 2.2 in manual on coupler/controller)		
EMC -Immunity to interference	acc. to EN 61000-6-2 (2005)	
EMC-Emission of interference	acc. to EN 61000-6-3 (2007)	
Approvals (see chapter 2.2 in manual on coupler/controller):		
(UL) Us		cUL
GL)	GL - Germanic Lloyd	Certification in progress
CE	Conformity marking	Certification in progress

3.6.1 Derating

In continuous operation, 5 A of motor current up to $50^{\circ} \mathrm{C}$ is possible. Derating above $50^{\circ} \mathrm{C}$ is 0.1 A per Kelvin.

Fig. 3.6.1-1: Derating curve in continuous operation with ventilator
g067221e

3.6.2 Specification of Current

3.6.2.1 Setting Motor Nominal Current

The vertex of the motor current can be defined via the configuration parameter Current at a resolution of 0.1 A .

3.6.2.2 Specification of Current Profile

The motor current can be set separately for the various motion phases.

- Standstill
- Acceleration
- Motion at constant speed
- Delay

The motor current is defined relatively to the motor nominal current; values between 0% and 150% are possible.

The module can supply a current of 150% of the module's nominal current for a limited time of up to 10 seconds.

To protect the module, a simplified thermal model is calculated for monitoring purposes. For this, the overcurrent is integrated when threshold value 150% * 10 s is reached, is turned off with an error message.

A lower overcurrent (I_{OV}) can be supplied by the module for a correspondingly longer time. The time until deactivation ($\mathrm{t}_{\text {off }}$) results from the following correlation:
$t_{\text {off }}=\frac{5 A}{I_{O V}-5 A} * 5 \mathrm{~s}$
After operation with overcurrent $\mathrm{I}_{\mathrm{OV}}\left(\right.$ time $\left.\mathrm{t}_{\mathrm{OV}}\right)$, a phase with reduced current I_{re} (time t_{re}) must follow, in order for the module's thermal model to return to its original state. The required cooling time ($\mathrm{t}_{\text {cool }}$) is calculated as follows:

$$
t_{c o o l}=4 * \frac{I_{O V}-5 A}{5 A-I_{r e}} * t_{O V}
$$

The prior overcurrent load can be retrieved in the internal status variables 21 . If overcurrent is present, the variable increases to 254 ; if no overcurrent is present, the variable returns to zero. When 255 is reached, the error message \#1413 PARTMODL_CURRENT_TIME is issued.

3.7 Process Image

The 750-672 I/O module provides the fieldbus coupler/controller 12 bytes input and output process image via 1 logical channel. The data to be sent and received are stored in up to 7 output bytes (D0 ... D6) and 7 input bytes (D0 ... D6), depending on the operating mode. Output byte D0 and input byte D0 are reserved and have no function assigned. $1 \mathrm{I} / \mathrm{O}$ module control and status byte (C0, S0) and 3 application control and status bytes (C1 ... C3, S1 ... S3) provide the control of the data flow.

Note

Mapping the process data of some I/O modules (or their variations) into the process image is specific to the fieldbus coupler/controller used. This information, as well as the specific configuration for relevant control/status bytes is located in the section "Fieldbus-Specific Configuration of Process Data." This section describes the process image of the particular coupler/controller.

3.7.1 Overview

A basic distinction is drawn between the cyclic process image and the mailbox process image.

	Mailbox process image (Mailbox activated)		Cyclic process image (Mailbox deactivated)	
$\begin{aligned} & \text { Off- } \\ & \text { set } \end{aligned}$	Input data	Output data	Output data	Input data
0	Status byte S0	Control byte C0	Status byte S0	Control byte C0
1	Reserved	Reserved	Reserved	Reserved
2	Process dataD0 ... D6	Process dataD0 ... D6	$\begin{gathered} \text { Mailbox } \\ \text { MB0 ... MB5 } \end{gathered}$	$\begin{gathered} \text { Mailbox } \\ \text { MB0 ... MB5 } \end{gathered}$
3				
4				
5				
6				
7				
8			Reserved	Reserved
9	Status byte S3	Control byte C3	Status byte S3	Control byte C3
10	Status byte S2	Control byte C2	Status byte S2	Control byte C2
11	Status byte S1	Control byte C1	Status byte S1	Control byte C1

Switching between the two process images is conducted through bit 5 in the control byte (C 0 (C0.5). Activation of the mailbox is acknowledged by bit 5 of the status byte $\mathrm{S} 0(\mathrm{~S} 0.5)$.

WAGO-I/O-SYSTEM 750
I/O Modules

3.7.2 Control Byte, Status Byte

Control byte C0							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	0	MBX	0	0	0	0	0
MBX Mailbox operation $0:$ Mailbox deactivated. $1:$ Mailbox activated. 0 Reserved							

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{8}{|c|}{Status byte S0} \\
\hline Bit 7 \& Bit 6 \& Bit 5 \& Bit 4 \& Bit 3 \& Bit 2 \& Bit 1 \& Bit 0 \\
\hline 0 \& ERR \& MBX \& X \& X \& X \& X \& X \\
\hline MBX \& \multicolumn{7}{|r|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Mailbox operation \\
0: Mailbox deactivated. \\
1: Mailbox activated. \\
Signaling errors and warnings \\
ERR (status byte 0 , bit 6) follows the general error bit Error (status byte 2, bit 7) and the general warning bit Warning (status byte 3 , bit 6). \\
ERR can be enabled via bits in the configuration table. In the default state, the ERR bit is not enabled. This means that errors and warnings will not result in a bit being set. \\
0 : No error and no warning present. \\
1: An error or a warning is present.
\end{tabular}}} \\
\hline ERR

X \& \& \& \& \& \& \&

\hline
\end{tabular}

Note

Configuration of the control and status bytes C1 through C3 and S1 through S 3 is described in detail in the corresponding sections.

In the tables of the control bytes and status bytes, the undescribed bits are highlighted gray. The currently described bits are not highlighted gray in the tables.

WAGO-IIO-SYSTEM 750

Control byte C2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error Quit	PreCalc	X	X	Acc	Sel	Freq	e_Sel
Freq_Range_Sel \quad S		Select frequency prescaler. The prescaler Frq_Prescaler can be set for frequency using these two bits when the module is to be operated without configuration via the mailbox. These values are accepted only when Enable is set to 0 . ' 00 ': The Freq_Prescaler prescaler is loaded with the parameter Freq_Div from the current configuration data set. Freq_Div $\gg 0$: Freq_Prescaler $=$ Freq_Div, $f_{\max }=2 \mathrm{MHz} /$ Freq_Div Freq_Div $=0$: Freq_Prescaler $=200, \mathrm{f}_{\text {max }}=10 \mathrm{kHz}$					
Acc_Range_Sel \quad S		Select acceleration factor. These two bits are used to set the Acc_Multiplier factor for acceleration. These values are accepted only when Enable is set to 0 . ' 00 ': The factor Acc_Multiplier is loaded with the parameter Acc_Fact from the current configuration data set. Acc_Fact >0 : Acc_Multiplier $=$ Acc_Fact Acc_Fact $=0$: Acc_Multiplier 8, T $=7600 \mathrm{~ms}$					
PreCalc		0 : Each setpoint that is transmitted via cyclic telegram traffic must be accepted and processed. A possibly pre-calculated movement process will be discarded. A movement sequence can be calculated and started using Start. 1: The setpoints from the cyclic telegram traffic are ignored and the setpoint saved for the $0 \rightarrow 1$ edge used instead. If the starting speed is zero, a movement sequence will be calculated in advance using this setpoint; this sequence can then be started with the normal delay using Start.					
Error_Quit X		Acknowledge errors and warnings. (see chapter 3.13, "Diagnostics") All errors and warnings that are present are acknowledged at the rising edge from 0 to 1 . After acknowledgment, the errors and warning bits are set to 0 if no new errors and warnings are present.					

WAGO-I/O-SYSTEM 750
I/O Modules

Status byte S2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error	$\begin{gathered} \text { PreCalc } \\ \text { ACK } \end{gathered}$	Referenc e_OK	Direction	On Speed	StandStill	Busy	On Target
On_Target	Target reached. The significance of this bit depends on the selected operating mode. 0 : A new mode will be selected, or a movement made to a new position. 1: Step positioning: The specified setpoint within the TargetWindowPosition Run program: target window has been reached. Referencing: The reference point has been moved to and set successfully. Jog Mode: The bit is not used in this mode and remains at 0 . Mailbox mode: Function of mailbox command. Speed The bit On_Target has no function in this operating mode control:						
Busy	Run task is executed and setpoint is not yet reached. The selected mode is active and a task has been started; the drive is rotating, or frequency output is not equal to 0 . 0 : No run task executed or setpoint has been reached. 1: Step positioning: Movement being made toward specified position. Run program: The current Run program is being executed. Speed Specified speed not yet reached. control: Referencing: Movement made toward reference point. Jog Mode: The drive has been started up using the pushbutton and is rotating. Mailbox mode: Function of mailbox command.						
StandStill	Drive standstill The bit StandStill is set when the setpoint lies within the TargetWindowSpeed or TargetWindowPosition window. 0 : Motor is turning. 1: Motor at standstill						
On_Speed	Drive speed reached On_Speed is set by individual commands in mailbox mode and in the run program. 0 : The drive has not reached its setpoint speed. 1: The drive has reached its setpoint speed. Step positioning: Specified speed from the process image has been reached Run program: The tolerance lies within the TargetWindowSpeed target Speed window. control: Mailbox operation Referencing: SetupSpeed has been reached. Jog Mode: The tolerance lies within the TargetWindowSpeed target window.						
Direction	Direction of rotation. This bit is valid only when StandStill is 0 . 0 : Drive moving in the negative direction. 1: Drive moving in the positive direction.						
Reference_OK	Referencing OK. Set when reference run has been successfully concluded. 0 : Reference run initiated or no valid reference. 1: The reference point has been successfully located in the reference run mode.						
PreCalc_ACK	Status; precalculation for movement sequence concluded. This bit acknowledges the request for a precalculation using PreCalc. 0 : Precalculation not yet completed, or no request received. 1: Precalculation completed.						
Error	Common error for module. (see chapter 3.13, "Diagnostics") An error can/must be acknowledged using Error_Quit. 0 : No error present for the drive. 1: Error present for the drive.						

Control byte C3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Quit	0	0	0	Direction _Neg	Direction Pos	0	SetActual Pos
SetActual_Pos		At the rising edge, the RefOffsetPos reference position is transferred from the configuration table into the ActualPosition of the process image. Because no handshake bit is present, the bit must be set for a minimum of 20 ms . This function is only possible in standstill. If the bit is set during operation, the actual value remains unchanged and no error is reported. 0: The RefOffsetPos reference position is not transferred 1: The RefOffsetPos reference position is transferred at the positive edge.					
Direction_Pos		0 : Drive not to move in a positive direction. 1: Drive should move in a positive direction. The drive is deactivated when the bit Direction_Neg is set at the same time.					
Direction_Neg		Reference e directio Dive not to rive shoul drive is miting no miting ac	ode thi in a ne e in a n ivated w e	defines that ve direction. ive direction. the bit Direct	ion_Pos is set	be sea he same	d for in a
Reset_Quit		A Power-on reset or a warm start of the module can be detected by the control system with the Reset status bit; this must be acknowledged using Reset_Quit. This also occurs after saving the user configuration to the EEPROM. Volatile data, parameters and tables for the module may be inconsistent and must be reloaded to ensure proper operation. 0 : Function not defined. 1: The Reset signal is reset.					
0		Reserved					

WAGO-I/O-SYSTEM 750
I/O Modules

3.7.3 Cyclic Process Image

The process image appears as follows when the mailbox is deactivated (C0.5 = 0):

Off- set	Input data		Output data		
0	S0	Status byte S0	C0	Control byte C0	
1	Reserved			Reserved	
2	D0	Process Data	D0	Process Data	
3	D1	Process Data	D1	Process Data	
4	D2	Process Data	D2	Process Data	
5	D3	Process Data	D3	Process Data	
6	D4	Process Data	D4	Process Data	
7	D5	Process Data	D5	Process Data	
8	D6	Process Data	D6	Process Data	
9	S3	Status byte S3	C3	Control byte C3	
10	S2	Status byte S2	C2	Control byte C2	
11	S1	Status byte S1	C1	Control byte C1	

The configuration of the process data depends on the set operating mode; this is described in the associated sections.

A basic distinction is drawn between the following process images:

- Positioning,
- Jogging,
- Run program,
- Speed setting.

3.7.4 Process Image Mailbox

The process image appears as follows when the mailbox is activated (C0.5 = 1):

Off- set	Input data		Output data	
0	S0	Status byte S0	C0	Control byte C0
1	Reserved		Reserved	
2	MB0	Opcode	MB0	Opcode
3	MB1	Status_Mbx	MB1	Control_Mbx
4	MB2	Reply Parameter byte 1	MB2	Request Parameter byte 1
5	MB3	Reply Parameter byte 2	MB3	Request Parameter byte 2
6	MB4	Reply Parameter byte 3	MB4	Request Parameter byte 3
7	MB5	Reply Parameter byte 4	MB5	Request Parameter byte 4
8		Reserved		Reserved
9	S3	Status byte S3	C3	Control byte C3
10	S2	Status byte S2	C2	Control byte C2
11	S1	Status byte S1	C1	Control byte C1

The individual applications can be set using opcodes.
The opcodes are assigned to various topical areas. They are described in the following chapters.

The control byte and status byte for the mailbox have the following function:

Control_MBX									
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
Toggle flag	0	0	0	0	0	0	0		Toggle flag
:---									
0									

Status_Mbx							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Toggle flag	Return-Code						
Return-Code	The return code indicates whether the last command was executed without error. If so, a value of 0 is returned. When the return code provides a value other than 0, you must check the corresponding opcode. If the state of the toggle flag differs in the Control_MBX, the mailbox is read out. Subsequently, the state of the bit is changed.						
Toggle flag							

3.8 Mailbox Operation

The mailbox considerably expands the range of application.
The mailbox is activated when bit 5 of the control byte C 0 is set to 1 .
Activation of the mailbox is acknowledged by bit 5 of the status byte S 0 .

Note

Mailbox mode is not automatically selected when the mailbox is activated in the coupler/controller! Bit 7 of control byte C 1 must be set to 1 for this.

3.9 Table Manager

Access to the tables is handled using the Table Manager. Possible table types are:

- Run programs,
- Positioning of camshaft,
- Target positions,
- Configuration,
- Data recorder.

Several tables of one table type may be present at different memory locations. The storage location is addresses using an index.

Index	Storage location
$0:$	not available / no table active / Factory Default for configuration / EEPROM
$1:$	RAM 1
$2:$	RAM 2

Exceptions are: Configuration and the data recorder use RAM1 exclusively. The data from the data recorder can not be copied to the EEPROM.

One table of each table type may be activated and written when in motion mode.

WAGO-I/O-SYSTEM 750
I/O Modules

Of each table type, one table can be saved to the EEPROM. Tables in EEPROM cannot be activated, but only copied to a RAM table. If a table is present in the EEPROM, it will be copied automatically to RAM1 and RAM2 following a reset and is activated such that it can be directly executed in RAM1.

The tables are loaded via a download from the control. The following rules apply for a download:

- A download is always conducted only into one table in the RAM.
- A download is only permitted, when the target table is inactive.

The download is verified for consistency using a checksum. If the checksum is incorrect, the loaded table is marked as invalid.

Tables may be copied. The following rules apply to the copying of tables:

- The target table must be empty. Tables in RAM can be deleted using the command TBL_ERA.
- A copy is only permitted, when the target table is inactive.

The Table Manager detects whether a table is blank, valid or invalid (for example during a download or after a faulted download). This information is saved for each table in a status byte:

Access to a table (except configuration), even from other program modules, can be performed only via the table manager. Depending on the table type, several options are available for access:

- Downloading of a table,
- Copying of a table,
- Deleting one or more tables,
- Activating a table,
- Writing / Teaching of an element (position table only).

The position table saves target positions which can be queried using special commands. This position table enables target positions to be edited and taught, without having to change the Run program.

The table for camshaft saves a bit pattern, which is output depending on the position. The activation of a different table for the camshaft is executed immediately.

The table for the configuration saves a data fields, containing configuration data.

3.9.1 Download

Table download is performed to implement a transport layer for transferring relatively large data volumes via the I/O bus.
The transferred data blocks are fragmented into 4-byte blocks, which are then transferred to the module at each I/O module cycle. These data bytes are embedded in the mailbox and can be transferred simultaneously with the process data, ensuring control over this process while also in this mode.

A download is basically broken down into 3 phases:

1. Preparation for download using the command DLD_START
2. Transfer of data using the command DLD_CONT
3. Completion of download using the command DLD_END.

These commands are elucidated in the appendix.

3.9.2 Control

After downloading of tables types:

- Run program
- Camshaft
- Position table
the tables, and the associated functions, must be enabled.
- The camshaft is always active after this.
- The Run program is active after this and can also be halted again, contrary to the camshaft.

These commands are elucidated in the appendix.

3.10 Configuration

The response of the stepper module is essentially determined by the settings in the configuration table. The configuration table is broken down into several sectors:

Addresses	Meaning
$0 \ldots 127$	Direct parameters (basic)
$128 \ldots 223$	Indicator table on source bits in the bit I/O table. The indicator table can be used to change the permanent assignment of internal and external function bits. The address of the target bit is consistent with the address of the configuration parameter.
$224 \ldots 376$	Direct parameters (basic)
$380 \ldots 508$	Direct parameters (extended)

The bit I/O table is broken down into two sectors: Addresses 0 ... 127 describe the data sources; addresses 128 ... 255 described the targets to which the indicator can point.

Fig. 3.9.2-1: Configuration and bit I/O tables
g067230e

3.10.1 Configuration using Control Byte C2

The following values can be configured using the control byte C 2 in the standard configuration.

3.10.1.1 Frequency Prescaler

The values for the frequency prescaler (Freq_Prescaler) are determined by the bits Freq_Range_Sel in control byte 2 (C2.0 and C2.1). If both of these bits are zero (0), the value for the parameter Freq_Div in the configuration table is used.

Freq_Range_Sel	'00'	'01'	'10'	'11'
Freq_Prescaler (frequency prescaler)	Freq_Div $<>0:$ Parameter Freq_Div from configuration table Freq_Div $=0:$ 200	80	20	4
$\mathrm{f}_{\mathrm{p}, \text { max }}$	Freq_Div $<>0:$ 2 MHz/Freq_Div Freq_Div $=0:$ 10 kHz	25 kHz	100 kHz	500 kHz

Note

If Freq_Range_Sel $=0$ and configuration parameter Freq_Div $=0$, the variable Freq_Prescaler is set to 200.

The run speed is determined by the pulse frequency $\left(f_{p}\right)$, which is determined by the output data Velocity (D0 and D1) and by the prescaler Freq_Prescaler.

$$
f p=\frac{\text { Velocity } * 80}{\text { Freq_Prescaler }[\mathrm{Hz}]}
$$

The acceptable velocity range is $1 \ldots 25000$. The setting for the pulse frequency in [Hz] is given by selecting Freq_Prescaler $=80$.

Note

The bits Freq_Range_Sel may only be modified when the control system is deactivated! These bits are therefore only accepted when Enable is not set.

WAGO-I/O-SYSTEM 750
I/O Modules

Correlation between the internal pulse frequency and the mechanical rotational speed at the motor axis.
$f_{m}=\frac{1}{p} * \frac{f_{p}}{256}$
f_{m} Rotational speed at the motor axis revolutions per second
p Number of pole pairs
f_{p} Internal pulse frequency
Correlation between the internal acceleration and the mechanical acceleration
$a_{m}=\frac{1}{p} * \frac{a}{256}$
a_{m} Acceleration
p Number of pole pairs
a Internal acceleration

3.10.1.2 Acceleration Factor

The value for the acceleration factor (Acc_Multiplier) is determined by the bits Acc_Range_Sel in control byte 2 (C2.2 and C2.3). If both of these bits are zero (0), the value for the parameter Acc_Fact in the configuration table is used.

Acc_Range_Sel	'00'	'01'	$\prime 10^{\prime}$	'11'
Acc_Multiplier (acceleration factor)	Acc_Fact <>0: Parameter Acc_Fact from configuration table Acc_Fact = 0: 8	80	800	8000
Acceleration period T to f max at max. acceleration 32767	Acc_Fact <> 0: Setting from configuration	760 ms		
Acc_Fact = 0: 7600 ms	76 ms	0.2 ms		

Note

If Acc_Range_Sel = 0 and configuration parameter Acc_Fact $=0$, the variable Acc_Multiplier is set to 8 .

Acceleration is determined by the output data Acceleration (D2 and D3) and the prescaler Freq_Prescaler and by the acceleration factor Acc_Multiplier.

$$
a=\text { Acceleration } * \frac{\text { Acc_Multiplier }}{\text { Freq_Prescaler }\left[\frac{H z}{s}\right]}
$$

The permissible acceleration range is $1 \ldots 32767$.
Acceleration is set in $[\mathrm{Hz} / \mathrm{s}]$ when the acceleration factor Acc_Multiplier is selected equal to the prescaler Freq_Prescaler.

Note

The bits Acc_Range_Sel may only be modified when the control system is deactivated! These bits are therefore only accepted when Enable is not set.

3.10.2 Configuration via Mailbox

Configuration Table

All parameters for configuring the servo stepper controller are in the configuration table.

The table below shows an excerpt from the configuration table.

Configuration variable	Offset (Dec.):	Bit Offs. $:$	Data type:	Default:	Range:	Description
User_Conf_Id	0		UINT16	0	$0 \ldots 50000$	The dataset number can be freely assigned by the user. Numbers above 50000 are reserved.
ConfVersion	2		UINT8	4	$0 \ldots . .254$	Configuration version number
Application_ Selector	3		UINT8	1	$0 \ldots 2$	Switching of the application The appropriate process image is activated when a new application is selected.
Freq_Div	4		UINT16	200	$4 \ldots 65535$	Sets the prescaler for the maximum velocity
Acc_Fact	6		UINT16	80	$1 \ldots 65535$	Sets factor for maximum acceleration

Access to the table is carried out via the mailbox.
All configuration parameters lie in the configuration data set.
The elements of the configuration data set are referenced via an address. The address results from the table assignment with configuration values. An element can occupy more than one byte, in which case the lowest value byte
occupies the given address. For explicit access to an element, the size of the element must be stated.

The table can be found in the appendix to chapter 4.6, „Configuration Variables".

The complete data set is loaded to the RAM on a download and is then saved to the EEPROM; a module warm start is then executed. The download is executed with the commands DLD_START, DLD_CONT and DLD_END. The commands are described in chapter 3.9, "Table Manager".

The writing procedure to the EEPROM is signaled by LED A.
The download is conducted by the table manager. The configuration dataset is saved to the EEPROM only after a successful download. Independent from the success of the download, a warm restart will be executed in any case.

The Reset status bit is set after the warm start; this must be canceled using the Reset_Quit control bit. Only then is the module operational again.

Alternatively, individual parameters can be modified target-oriented when the terminal is active.

This requires the diagnostics opcodes (see chapter 3.13, „

Diagnostics").
If a valid configuration data set is available in the EEPROM after power-on, reset or a warm start of the module, this data set is loaded to the RAM; if not, the factory default data set is loaded, i.e. the module is restored to the WAGO as-delivered status.

3.10.2.1 Configuration of Basic Parameters

3.10.2.1.1 Application Selection

Application_Selector, Offset 0, Range [0 ...5]

The Application_Selector determines the basic function:

Value	Application
0	Reserved
1	Positioning controller

3.10.2.1.2 Prescaler for Maximum Velocity

Freq_Div, Offset 4, Range [4 ...65335]

The maximum internal output frequency is derived from an internal 2 MHz cycle by a prescaler. When the smallest possible prescaler (4) is selected, a maximum internal frequency of $500,000 \mathrm{~Hz}$ is yielded. The stepper frequency is derived from this fundamental frequency (see chapter 4.1, "Calculation Formulas").

3.10.2.1.3 Factor for Maximum Acceleration

Acc_Fact, Offset 6, Range [1 ...65535]
Acceleration is given in steps $/ \mathbf{s}^{2}$. The specified value is multiplied by the acceleration factor (Acc_multiplier) and then divided by the frequency prescaler (Freq_Prescaler).
$a=$ Beschleunigungswert $* \frac{\text { Acc_multiplier }}{\text { Freq_Prescaler }}$
Acceleration value: Setting via process image, or parameter in an opcode.

3.10.2.1.4 Reference Run

Reference_Offset, Offset 108, Range [\pm 8388607]
Position of reference switch.

Reference_Mode, Offset 112

Mode for referencing on start of a reference run using the control bit M_Reference. At the start of a reference run via the mailbox using the Move command START_REFERENCING, the call parameters are used (and NOT the following configuration bits).

Bit $1:$	
$0:$	Reference run to reference switch
1:	Reference run to limit switch
Bit 2:	
$0:$	Reference run to negative end of a reference switch
1:	Reference run to positive end of a reference switch
Bits $3 \ldots 7:$ Reserved	

3.10.2.1.5 JogMode

Acc_Fact, Offset 44, Range [1 ...25000]
Default setup speed.
The current moving speed is used when this parameter is 0 .
Acc_Fact, Offset 62, Range [0 ...32767]
Acceleration for JogMode and Referencing.

3.10.2.1.6 Ramps

Acceleration_Stop_Fast, Offset 46, Range [0 ...32767]
Default acceleration for STOP mode; the current acceleration is used when this parameter is 0 .

Acceleration_RampUp, Offset 48, Range [0 ...32767]
Default acceleration for acceleration phase.
Acceleration_RampDown, Offset 50, Range [0 ...32767]
Default acceleration for delay phase.
Acceleration_RampUp_Param, Offset 52, Range [0-16777216]16777216]

Default acceleration time or acceleration path
Acceleration_RampDown_Param, Offset 56, Range [0-16777216]16777216]

Default delay period or delay path.
Acceleration_Modes, Offset 60

	... 1: AccType (acceleration type)
0 :	constant acceleration
1:	Linear rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
2 :	Sin2 rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
3:	Reserved
Bit 2 .. Bit 2-3: AccParam (Acceleration parameter)	
0 :	no modification
1:	Acceleration_RampUp_Param interpreted as the acceleration period
2.	Acceleration_RampUp_Param interpreted as the acceleration path
3:	Reserved
Bits $4 . . .5$: DecType (deceleration type)	
0 :	constant acceleration
1 :	Linear rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
2 :	Sin 2 acceleration; the period for acceleration increase is Acceleration_RampUp_Param
3:	Reserved
Bits 6 ... 7: DecParam (decelration parameter)	
0 :	no modification
1:	Acceleration_RampUp_Param interpreted as the acceleration period
2:	Acceleration_RampUp_Param interpreted as the acceleration path
3:	Reserved

3.10.2.1.7 Scaling Factors

Pos_Mult, Offset 20, Range [1 ... 65535]
Pos_Div, Offset 22, Range [1 ... 65535]
Scaling factors for position.
Speed_Mult, Offset 28, Range [1 ... 65535]
Speed_Div, Offset 30, Range [1 ... 65535]
Scaling factors for speed.
Acc_Mult, Offset 32, Range [1 ... Acc_Mult, Offset 32, Range [1-65535] Acc_Div, Offset 34, Range [1-65535]65535]

Scaling factors for acceleration.

3.10.2.1.8 Brake

Braketime_Turn_On, Offset 100, Range [1 ...8388607]
Activation time for brake in [ms].
Braketime_Turn_Off, Offset 104, Range [0 ...8388607]
Switch-off time for brake in [ms].

3.10.2.1.9 Hardware/Software Configuration

HwSwConfig, Offset 19

Bits $0 \ldots 1:$ Reserved	
Bit 2: Drive_Direction (Direction of rotation inversion)	
$0:$	Output signal is processed directly
$1:$	Output signal: rotary direction is inverted
Bits $3 \ldots$... 6: Reserved	
Bit $7:$ Program_Autostart (Run program Autostart - Normal mode)	
$0:$	Run program activated only via Run program or Mailbox mode.
$1:$	Run program activated immediately after startup, see description.

3.10.2.1.10 Current Controller

The current controller works in accordance with the hysteresis procedure, which is distinguished by the following characteristics:

- Relatively easy parameterization
- Regulation characteristics are nearly independent from the motor
- Robust performance without stability problems
- Very quick reaction
- Minimal switching loss

The preset two- or three-point controller regulates the motor current within the hysteresis band that is specified by the parameter Current_Ctrl_Hysteresis.

The hysteresis should not fall below 50 mA , since the measurement noise and the resolution would then become negatively apparent. The upper limit should not exceed 10% of the motor current. The switching frequency falls in the case of an increasing hysteresis and can then lie within the audible range. The upper maximum switching frequency lies at approximately 30 kHz and cannot be exceeded.

Note

Due to the its architecture, readjusting the current controller is typically not necessary. Please contact WAGO Support.

Parameterizing the current controller:

Addr esses	Parameter	Range	Function			
384	Currrent_Ctrl_Hyste resis	$0 \ldots 5000$	Current controller hysteresis: The current controller hysteresis has the unit [mA]. The parameter defines the width of the current band.			
388	Currrent_Ctrl_TZMi n	$1 \ldots 65535$	Current three-point controller only: before switching band in [us * 4]			
392	Currrent_Ctrl_TZMa x	$1 \ldots 65535$	Current three-point controller only: Max. time after switching null pointer in [us * 4]. The band will then be forced to switch independently of the current.			
394	Curr_Pass2	$1 \ldots 65535$	Password for current controller parameters: EXOR link for parameters 384, 388, 392, 396 and $0 x C O D E . ~ A ~ f a l s e ~ p a s s w o r d ~ w i l l ~ g e n e r a t e ~ a n ~ e r r o r ~$			
message.				$	$	Current controller type:
:---						
$0: \quad$ Three-point controller						
$1: \quad$ Two-point controller						

3.10.3 Digital Signals and their Interconnection

The vital binary signals are addressed by central access functions. This permits easy, external access to all bits and allows linking of the bits to one another to be parameterized. Access to individual bits is performed using an index $0 \ldots 255$.

A bit function is defined by the function unit that sets the bit (source) and the function unit that reacts to this bit (target). Only the source is defined for output bits, and only the target for control bits. Only status bits have set links between two function units; they can, however, also be queries as output bits for further processing. Bits for which the source is not fixed are designated as linkable bits.

The universal filter functions FILT1 ... FILT8 possess a special status. The inputs for these filter functions are linkable bits that can be linked to any other bit. A query of these bits, on the other hand, provides information about the status of the filter. As a result, these bits represent a function between inputs and outputs.

The table containing the available bits is given in the appendix in chapter 4.5, „Bit Field for I/O Driver".

The following conventions apply:

- Source bits are assigned numbers 0 to 127 and may not be used as target bits. A source bit may reference several target bits.
- Target bits are assigned numbers 128 to 255 and may also be used as source bits. Target bits have exactly one source.
- References are stored in the configuration table. The names of the table entries correspond to those in the bit table. The prefix Ptr is placed in front of the identifier.
- The standard link between the source and target is entered in the column "Target/Source". This corresponds to the WAGO default settings (FACTORY_DEFAULT).

3.10.4 Linking of Bits

The expanded parameters are set using pointers (indices). The address for these pointers indicates a corresponding address in the bit I/O field. Allocation using names is also provided. "Ptr_nnn" indicates the variable "nnn".

Actual allocation is conducted using the content of the pointer.
The figure below illustrates allocation with an example of motor shutdown using Stop1_N and Stop2_N.

Fig. 3.10.4-1: Linking of bits
Index Ptr_Stop1_N has a value of 48 ($0 x 30$), thus assigning Input1 to the Stop1_N variable.
Index Ptr_Stop2_N has a value of 65 (0×41), thus assigning control bit C1.1 to the Stop2_N variable.

The table excerpts given below show the corresponding entries for the configuration and bit I/O table.

Configuration Variable	Address		Data	Default type value	Range	Description
	Dec.	Hex.				
\ldots						
Ptr_Stop2_N	177	$0 x B 1$	UINT8	0×41	$0 \ldots 255$	Source for linkable bit 0xB1
\ldots						
Ptr_Stop1_N	194	$0 x C 2$	UINT8	0×30	$0 \ldots 255$	Source for linkable bit 0xC2
\ldots						

Designation	Bit number		Type	Default allocation		Description
	Dec.	Hex.		Target/Sourc e	Bit no.	
\ldots						
Input1	48	0x30	SRC	$\begin{aligned} & \text { KBUS_ST3_0 } \\ & \text { Stop1_N } \end{aligned}$	$\begin{aligned} & 0 \times 90 \\ & 0 \times 2 \end{aligned}$	Input 1
\ldots						
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_1 } \end{aligned}$	65	0x41	SRC	Stop2_N	0xB1	Internal bus control byte 1 bit 1
\ldots						
Stop2_N	177	0xB1	DST/ SRC	$\begin{aligned} & \text { KBUS_CTRL } \\ & 1 _1 \end{aligned}$	0x41	Drive Stop 2 inverted
\ldots						
Stop1_N	194	0xC2	DST/ SRC	Input1	0x30	Drive Stop 1 inverted
\ldots						

Linkable bits can be programmed for any source. This "linkability" enables flexible configuration and flexible arrangement of module terminal assignments. For example, the Start linkable bit can be set to the Input 1 fixed bit.

Note

A linkable bit can be linked to another linkable bit, but the maximum number of nesting levels is four (4). Too many nesting levels will yield an ambiguous result and the error ERR_LINK_NESTING will be issued.

Note

The nesting levels are not checked until the system run time.
The linking of bits occurs in the device configuration and is modifiable only by a reconfiguration. Exceptions are those bits which are linked to MZERO and MONE. Such bits can be freely set and reset during operation via mailbox commands or the run program.

Please see the following example for clarification:
Input 2 is normally set as the reference input. However, in a certain application is may be more advantageous to use Input 2 for specifying the direction of movement for the JogMode. Moreover, a "1" at the input should signify that the motor is moving in a positive direction.

The address and length of the configuration variables are given in the appendix in chapter 4.6, „Configuration Variables".

Configuration variable	Address		Data	Default type	Ralue	Range

The bits required for this are given in the appendix in chapter 4.5, „Bit Field for I/O Driver".

Designation	Bit number			Default allocation		Dec.
	Hex.		Target/Sourc e	Bit no.		

A prerequisite for this is that the mailbox has already been activated. This is described in chapter 3.8, "Mailbox Operation".

Using the above described procedures, the bits of control and status byte of the standard assignment can be modified.

Warning

Any change to the standard configuration will invalidate the description given for the changed items.

Unused linkable bits may be linked to the constant bits ZERO or ONE.

3.10.4.1 Special bits ZERO, ONE, MZERO and MONE

The ZERO and ONE bits are fixed.
The ZERO bit is always deleted and has a value of 0 ; the ONE bit is always set and has a value of 1 .
Linkable bits can be set to a fixed value using ZERO and ONE bits.
The MZERO and MONE bits have the same function, but also possess an additional function when they are the source for linkable bits.
The source bit gives the status of linkable bits. As a result, linkable bits cannot be changed by commands or access functions. Exceptions to this rule are the linkable bits that are linked to MZERO and MONE.
A bit that is linked to MZERO is first deleted after a reset, but can be manipulated as required using the mailbox command or the Run program. A bit that is linked to MONE is initially set after a reset and is otherwise treated the same as a bit linked to MZERO.

3.10.4.2 User Bits

The following bits in the bit table are accessible to the user as marker bits:

Designation	Bit number	
	Dec.	Hex.
UserBit_0	152	0x98
UserBit_1	153	$0 x 99$
UserBit_2	154	$0 x 9 \mathrm{~A}$
UserBit_3	155	0x9B
UserBit_4	156	0x9C
UserBit_5	157	0x9D
UserBit_6	158	0x9E
UserBit_7	159	0x9F

As an example, they can be reasonably implemented in a run program.

Warning

The user bits can only be written when they are properly linked in the configuration table.

Configuration Variable	Address	
		Dec.
Ptr_UserBit_0	X	152
Ptr_UserBit_1	X $\quad 99$	153
Ptr_UserBit_2	X $\quad 9 \mathrm{~A}$	154
Ptr_UserBit_3	X _ 9B	155
Ptr_UserBit_4	X $\quad 9 \mathrm{C}$	156
Ptr_UserBit_5	X _ 9D	157
Ptr_UserBit_6	X__9E	158
Ptr_UserBit_7	X	159

The bits are linked with the bit MZERO (2), which enables write access.

3.10.4.3 Filters, Low Pass, Timers and Counters

The filter is configured using the table with the configuration values (see chapter 4.6, „Configuration Variables").

Eight special bits are defined that can implement the following functions:

1. Inverting
2. Starting edge filter
3. Low pass
4. Pulse extension
5. Monoflop, not retriggerable
6. Pulse delay
7. Math
8. Counter, up
9. Counter, up, stop at overrun
10. Counter, down
11. Counter, down, stop at overrun.

The functions inversion and starting edge filter react to the linkable input bit and trigger the output undelayed.

The functions low pass, impulse extension, monoflop and pulse delay react to the linkable input bit and trigger the output according to the selected function with a definable time constant. This time can be set between $0 \ldots 16777215$ ms.

Fig. 3.10.4-2: Inverting
A starting edge filter recognizes to states. After a reset, the filter is in wait state as long as the input is active. The output supplies 0 . As soon as the input signal is Zero for the first time, the filter changes to operating mode and the input signal is passed unchanged to the output. An operational change back to the wait state is not intended.

Fig. 3.10.4-3: Starting edge filter
The Low pass does not accept any change of the input signal until the new status is constant during the runtime.

Fig. 3.10.4-4: Low pass 500 ms
The impulse expansion sets the output at a $0 \rightarrow 1$ edge of the input.. The output is reset when the time set has passed after the $1 \rightarrow 0$ edge.. A re-triggering during the runtime is possible.

Fig. 3.10.4-5: Pulse extension 500 ms
The monoflop function sets the output at a $0 \rightarrow 1$ edge of the input. After the set time has passed, the output is reset.. A re-triggering during the runtime is not possible.

Fig. 3.10.4-6: Monoflop 500 ms cannot be retriggered with short input pulse

Fig. 3.10.4-7: Monoflop 500 ms cannot be retriggered with long input pulse
Pulse extension sets the output when the set time has expired after an input $0 \rightarrow 1$ edge. The output is reset as soon as the input is deactivated. The output is not reset if the input is deactivated before the set time expires.

Fig. 3.10.4-8: Pulse delay 500 ms

Application example: filters connected in series: Monoflop 500 ms , inverting and a second monoflop 100 ms .

Fig. 3.10.4-9: Filters connected in series: Monoflop 500 ms , Inverting and second monoflop 100 ms

The math function reacts independently of the input bit. This value can only be set, incremented or decremented using commands. These commands can be transferred in the mode "Mailbox Move command," or processed as a component of the downloaded program in the mode "Program mode." The output is set when the counter has a value other than zero and is reset when the filter reaches zero. The commands for modifying the filter can only be used in the function "Math" or "Counters."

In the mode "Counter, up"/"Counter, down" the filter value is raised or lowered by one for each $0 \rightarrow 1$ edge of the filter input. The maximum counting frequency for external signals is 1 kHz ; internal signals are normally evaluated once per program cycle.

The mode "Counter, up, stop" / "Counter, down, stop" behaves in the same manner as "Counter, up" / "Counter, down", except that counting is halted when the filter value reaches zero. This however means that the filter value must be preloaded with a starting value unequal to Zero, from which it counts towards Zero.

3.10.5 Run Commands

The commands are divided in classes:

- Table commands
- Run commands
- Auxiliary commands

In addition to pure Move commands, auxiliary commands and table commands are also accepted. The Move commands are passed along to the command interpreter. The table commands and auxiliary commands are required exclusively for the Run program mode.

A process is started using Move commands; there is no waiting for the end of the process (such as reaching a target).

Most commands are processed immediately, with the following exceptions.
Motion commands are only started when the previous motion command has arrived at the target. Table processing is interrupted in this case until the target is reached.

An exception here are the direct Move commands _IMM (immediate), which discontinue the Move command currently in progress and are directly processed.

Commands waiting for an event are repeated until the event has occurred.
The Move command manager decides from which source the Move commands are to be accepted. Possible sources may be:

- Status control,
- Limit switches,
- Run commands via mailbox commands,
- Positioning,
- Referencing,
- JogMode,
- Program mode.

Condition control and limit switches are processed in priority; they can only execute commands to brake the drive. The selection of the corresponding operating mode switches between the other setpoint values.

A run program serves in the consecutive execution of individual motions. In addition, some values can be set via the run program.

Two options are available for the processing of a run program:

- Program operation:

The individual commands are collated and loaded to the terminal via download. The run program can then be executed there through the Program mode (see chapter 3.11.1.7, „Run Program Operating Mode").

- Run task via mailbox:

The module can be operated via mailbox using the move commands. Movement can be made directly to different positions. This command is accepted only when the mode "Move task via mailbox"(chapter 3.11.2, "Move Mode via Mailbox") has been activated.

Each individual step in the Run program has the following format:

Byte	Meaning
1	Command
2	Data 1
3	Data 2
4	Data 3

The individual commands are elucidated in the appendix in chapter 4.3, „Commands for Move Mode".

3.10.6 Scaling, Number Ranges and Units

Stepper drives rotate at a defined angle on each pulse. The software is oriented to this impulse output; accordingly, the internal unit for the position is a "step". Velocity and acceleration are derived form this. The interface enables adaptation and conversion to application-specific units (path in m, mm, degrees, and velocities in m / s, degrees $/ \mathrm{s}$).

3.10.6.1 Internal Measuring Unit

3.10.6.1.1 Time

On account of the periodical processing employed, time is measured in TICKS, with a TICK being the duration of one scan interval. A TICK is equal to one millisecond. Physical units based on time are converted accordingly.

3.10.6.1.2 Path

The travel, or path, is measured in "steps". The number range is 24 bits, including sign.

Position range: -8388608-+8388607, Presentation in two's complement.

Correlation between the position specification in the process data and the rotor bearing on the motor axis.
$\varphi=360^{\circ} * \frac{s}{64 * N}$
$\varphi \quad\left[{ }^{\circ}\right]$ Rotor bearing, axis angle
s [1] Setpoint position in process image
N [1] Number of full steps

3.10.6.1.3 Velocity

Velocity is measured in "steps per unit of time", with the range being ± 15 bits.
Velocity range:
Velocity $_{\min } \ldots$ Velocity $_{\max }=-25000 \ldots+25000$

3.10.6.1.4 Rotational Speed

3.10.6.1.4.1 Calculation via Internal Pulse Frequency

Correlation between velocity specification in the process data and internal pulse frequency

$$
f_{p}=\frac{\text { Speed_Mult }}{\text { Speed_Div }} * \frac{80 * v}{\text { Freq_Div }}
$$

$\mathrm{f}_{\mathrm{p}}[1 / \mathrm{s}]$	Internal pulse frequency in increments per second ${ }^{\wedge}$ 2
$\mathrm{v}[1]$	Setpoint velocity in process image Speed_Mult Scaling factor for setpoint velocity (parameter 28 from configuration table)
Speed_Div	Scaling factor for setpoint velocity (parameter 30 from configuration table)
Freq_Div	Prescaler for maximum velocity (parameter 4 from configuration table)

Correlation between the internal pulse frequency and the mechanical rotational speed at the motor axis
$f_{m}=\frac{1}{p} * \frac{f_{p}}{256}$
f_{p} [1/s] Internal pulse frequency in increments per second ${ }^{\wedge} 2$
$\mathrm{f}_{\mathrm{m}}[1 / \mathrm{s}]$ Rotational speed at motor axis in revolutions per second
p [1] Number of pole pairs
v [1] Setpoint speed in process image

3.10.6.1.4.2 Direct Calculation

Correlation between velocity specification in the process data and mechanical rotational speed at the motor axis

$$
\begin{aligned}
& f_{m}=\frac{1}{p} * \frac{\text { Speed_Mult }}{\text { Speed_Div }} * \frac{v}{3,3 * \text { Freq_Div }} \\
& n_{m}=60 * f_{m}
\end{aligned}
$$

$$
\mathrm{f}_{\mathrm{p}}[1 / \mathrm{s}] \quad \text { Internal pulse frequency in increments per second }{ }^{\wedge} 2
$$

$$
\mathrm{f}_{\mathrm{m}}[1 / \mathrm{s}] \quad \text { Rotational speed at motor axis in revolutions per second }
$$

$$
\mathrm{n}_{\mathrm{m}}[1 / \mathrm{min}] \quad \text { Rotational speed at motor axis in revolutions per minute }
$$

$$
\mathrm{p}[1] \quad \text { Number of pole pairs }
$$

$$
\mathrm{v} \text { [1] Setpoint velocity in process image }
$$

Speed_Mult Scaling factor in process image

$$
\text { (parameter } 28 \text { from configuration table) }
$$

Speed_Div Scaling factor for setpoint velocity

$$
\text { (parameter } 30 \text { from configuration table) }
$$

$$
\text { Freq_Div } \quad \text { Prescaler for maximum velocity }
$$

$$
\text { (parameter } 4 \text { from configuration table) }
$$

These values can also be specified and defined with user-specific units. For this, the specified data for speed is multiplied by a factor Speed_Mult prior to internal processing and then divided by a factor Speed_Div. If the internal \rightarrow external or external \rightarrow internal conversion violates the permissible value range, error message 1513 (UNITS_SPEED_INT_RESULT) or 1514 (UNITS_SPEED_USER_RESULT) will be īissued.

3.10.6.1.5 Acceleration

Correlation between internal acceleration and specification in the process data

$a=\frac{\text { Acc_Mult }}{\text { Acc_Div }} * \frac{\text { Acc_Fac }}{\text { Freq_Div }} *$ Acceleration	
a	Internal acceleration
Acc_Mult	Scaling factor for setpoint acceleration (parameter 32 from configuration table)
Acc_Div	Scaling factor for setpoint acceleration (parameter 34 from configuration table)
Acc_Fac	Factor for maximum acceleration (parameter 6 from configuration table) Prescaler for maximum velocity (parameter 4 from configuration table)
Freq_Div	Setpoint acceleration

Correlation between the internal acceleration and the mechanical acceleration

$$
a_{m}=\frac{1}{p} * \frac{a}{256}
$$

$\mathrm{a}_{\mathrm{m}}\left[1 / \mathrm{s}^{\wedge} 2\right] \quad$ Acceleration at motor axis in revolutions per second ${ }^{\wedge} 2$
p [1] Number of pole pairs
a Internal acceleration
These values can also be specified and defined with user-specific units. For this, the specified data for acceleration is multiplied by a factor Acc_Mult prior to internal processing and then divided by a factor Acc_Div. If the internal \rightarrow external or external \rightarrow internal conversion violates the permissible value range, error message 1515 (UNITS_ACC_INT_RESULT) or 1516 (UNITS_ACC_USER_RESULT) will be issued.

3.10.6.2 External Measuring Units

Internal representation can also be converted to application-specific units using conversion factors. Conversion is performed by muliplying by a configurable factor (*_MULT) and then dividing by a configurable factor (*_DIV). This way, fractions can be set with high accuracy within a wide range. These factors are expalined in greater detail in the following sections.

3.10.6.2.1 Path

The setting data for the positions are multiplied by the configuration factor Pos_Mult prior to internal processing and then divided by the configuration factor Pos_Div.

For example, is a step (or microstep) corresponds to travel of 0.12 mm , the setting can be given in $\mu \mathrm{m}$ by selecting Pos_Mult = 1 and Pos_Div $=120$, or in mm by selecting Pos_Mult $=25$ and Pos_Div $=3$.

If the internal \rightarrow external or external \rightarrow internal conversion violates the permissible value range, error message 1511 (UNITS_POS_INT_RESULT) or 1516 (UNITS_POS_USER_RESULT) will be issued.

3.10.6.2.2 Velocity

The setting data for velocity are multiplied by the configuration factor Speed_Mult prior to internal processing and then divided by the configuration factor SPEED_DIV and the prescaler Freq_Prescaler.

If the internal \rightarrow external or external \rightarrow internal conversion violates the permissible value range, error message
1513 (UNITS_SPEED_INT_RESULT) or
1514 (UNITS_SPEED_USER_RESULT) will be issued.

3.10.6.2.3 Acceleration

The setting data for acceleration are multiplied by the configuration factor Acc_Mult prior to internal processing and then divided by the configuration factor Acc_Div.

If the internal \rightarrow external or external \rightarrow internal conversion violates the permissible value range, error message 1515 (UNITS_ACC_INT_RESULT) or 1516 (UNITS_ACC_USER_RESULT) will be issued.

3.11 Operating Modes

3.11.1 Operation via Cyclic Process Image

Various operating modes are available in the stepper controllers. They are described in the following chapters.

An operating mode is selected using the Command[0...5] mode selection bits in the cyclic process image

3.11.1.1 Selecting an Operating Mode

A mode can only be selected when the module is ready for operation and no other mode is active. This is the case when the status bits Ready and Stop_N_ACK are active and Start_ACK and Start are not active. If these conditions is not fulfilled but a Command[0...5] mode selection bit is still set, mode selection is delayed until this condition is fulfilled.
This delay ensures that any tasks in progress are ended properly.
An operating mode is selected by setting the assigned mode selection bit. If an operating mode is already active, setting another mode selection bit has no function, and the old operating mode is maintained.

The selection of an operating mode is acknowledged by the assigned operating mode status bit *_ACK.

3.11.1.2 Exiting an Operating Mode

An operating mode is exited by deleting the assigned mode selection bit. If the drive is still in motion, it is then braked at the acceleration Acceleration_Stop_Fast. The assigned mode status bit will not be canceled until the drive comes to a standstill.

The Standstill status bit is set when the drive is motionless.
A mode is also ended when Stop_N_ACK is reset. If the drive is still in motion, it is then braked at the acceleration Acceleration_Stop_Fast. The assigned mode status bit will not be canceled until the drive comes to a standstill.

A mode is also ended when Ready is reset. Independent from the drive condition, the speed is immediately set to Zero. The assigned operating mode status bit is cleared immediately. This procedure poses loss of control over the drive, allowing the motor to run down in an uncontrolled manner particularly at loads with high moments of inertia. This is usually combined with step loss, and a reference motion should be initiated subsequently.

3.11.1.3 Sequence Diagram for Selection and Ending of Modes

Fig. 3.11.1-1: Sequence diagram for Positioning
g067x20e

(1)	The module is ready for operation when no error is present after setting of Enable.
(2)	An operating mode can be selected when Stop_N_ACK has been set.
(3)	Mode 1 is selected.
(4)	Mode 1 has been accepted by the module.
(5)	The drive is started by the Start rising edge in Mode 1.
(6)	Start can be canceled if the Start_ACK bit has been set.
(7)	Mode 1 is ended. The drive is run down to standstill.
(8)	Mode 1 is ended. The drive is motionless.
(9)	Mode 2 is selected.
(10)	Mode 2 has been accepted by the module.
(11)	The drive is started by the Start rising edge in Mode 1.
(12)	Start can be canceled if the Start_ACK bit has been set.

*) Linked to DI 1 in the standard configuration.

3.11.1.4 Single Positioning Operating Mode

The single positioning operating mode is only possible when the mailbox is deactivated.

The mode must first be activated using Command[] $=1$. When bit Command_ACK[] $=1$ is set, the singe positioning mode is active. The following setpoints can then be specified:

- Velocity,
- Acceleration,
- Absolute position.

The permissible velocity range is $1 \ldots 25000$. A velocity equal to 0 , velocities greater than 25000 and negative velocities are not permitted and will result in an error message.

The permissible acceleration range is $1 \ldots 32767$. An acceleration equal to 0 and negative acceleration are not permitted and will result in an error message.

The setpoints are not accepted until a rising edge of Start. The drive starts up, or frequency is output, directly after the setpoints are accepted. The bit On_Target is canceled immediately and is not reset until the final position has been reached.

The Busy bit is set from the time when the setpoints are accepted until the target is reached.

New setpoints can be activated during the run by a new rising edge of Start. Movement is made toward the new position immediately at the new velocity and acceleration. Movement toward the old position is not continued (on-thefly change). This function may also change the velocity or acceleration during an ongoing process.

Note

When using linear or $\sin ^{2}$ acceleration, the rapid setpoint acquisition can only be implemented when the drive is running with $\mathrm{v}=$ const. During constant acceleration, the new setpoint is acquired even during periods of increase.

The special features associated with limit switches and the Jog and Referencing modes are described in the corresponding sections.

3.11.1.4.1 Process Image Single Positioning

The single positioning process image represents the standard configuration for stepper positioning control and is shown in the following tables:

Off- set	Input data		Output data	
0	S0	Status byte S0	C0	Control byte C0
1	Reserved		Reserved	
2	D0	Actual Velocity L	D0	Velocity L
3	D1	Actual Velocity H	D1	Velocity H
4	D2	Reserved	D2	Acceleration L
5	D3	Reserved	D3	Acceleration H
6	D4	Actual position L	D4	Target position L
7	D5	Actual position M	D5	Target position M
8	D6	Actual position H	D6	Target position H
9	S3	Status byte S3	C3	Control byte C3
10	S2	Status byte S2	C2	Control byte C2
11	S1	Status byte S1	C1	Control byte C1

The meaning of the control and status bytes is given in the following tables:

Control byte C1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command					Start	Stop2_N	Enable
Enable See chapter 3.7.2, "Control Byte, Status Byte". Stop2_N See chapter 3.7.2, "Control Byte, Status Byte". Start Startup of drive. The drive is started in the selected mode on a positive edge. If the edge is not accepted (in the Jog or Mailbox mode), an error message is generated. $0 \rightarrow 1: \quad$The drive is started accordingly on the rising edge. The specified setpoints have been accepted from the process image. Movement is made directly to the new target, even if the drive is already turning. A previously calculated movement sequence is started immediately when the PreCalc_ACK bit is set (instant setpoint switch).	See chapter 3.7.2, "Control Byte, Status Byte". See chapter 3.7.2, "Control Byte, Status Byte". Startup of drive. The drive is started in the selected mode on a positive edge. If the edge is not accepted (in the Jog or Mailbox mode), an error message is generated. $0 \rightarrow 1$: The drive is started accordingly on the rising edge. The specified setpoints have been accepted from the process image. Movement is made directly to the new target, even if the drive is already turning. A previously calculated movement sequence is started immediately when the PreCalc_ACK bit is set (instant setpoint switch).						
0 : Idle mode 1: Single positioning For this operating mode, the mailbox must be disabled							

Control Byte C2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error Quit	PreCalc	X	X	Acc	e_Sel	Freq	e_Sel
Freq_Range_Sel		Select frequency prescaler. The prescaler Frq_Prescaler can be set for frequency using these two bits when the module is to be operated without configuration via the mailbox. These values are accepted only when Enable is set to 0 . '00': The Freq_Prescaler prescaler is loaded with the parameter Freq_Div from the current configuration data set. Freq_Div >0 : Freq_Prescaler $=$ Freq_Div, $f_{\max }=2 \mathrm{MHz} /$ Freq_Div Freq_Div $=0$: Freq_Prescaler $=200, \mathrm{f}_{\text {max }}=10 \mathrm{kHz}$					
Acc_Range_Sel \quad S		Select acceleration factor. These two bits are used to set the Acc_Multiplier factor for acceleration. These values are accepted only when Enable is set to 0 . ' 00 ': The factor Acc_Multiplier is loaded with the parameter Acc_Fact from the current configuration data set. Acc_Fact >0 : Acc_Multiplier $=$ Acc_Fact Acc_Fact $=0$: Acc_Multiplier 8, $T=7600 \mathrm{~ms}$					
PreCalc		0 : Each setpoint that is transmitted via cyclic telegram traffic must be accepted and processed. A possibly pre-calculated movement process will be discarded. A movement sequence can be calculated and started using Start. 1: The setpoints from the cyclic telegram traffic are ignored and the setpoint saved for the $0 \rightarrow 1$ edge used instead. If the starting speed is zero, a movement sequence will be calculated in advance using this setpoint; this sequence can then be started with the normal delay using Start.					
$\begin{aligned} & \text { Error_Quit } \\ & \text { X } \end{aligned}$		See chapter 3.7.2, "Control Byte, Status Byte".Reserved					

WAGO-I/O-SYSTEM 750 I/O Modules

Status Byte S2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error	PreCalc ACK	Referenc e OK	Direction	On Speed	StandStill	Busy	On Target
On_Target		Target reached. The significance of this bit depends on the selected operating mode. 0: A new mode will be selected, or a movement made to a new position. 1: Step positioning: The specified setpoint within the TargetWindowPosition target window has been reached.					
Busy		Run task is executed and setpoint is not yet reached. The selected mode is active and a task has been started; the drive is rotating, or frequency output is not equal to 0 . 0 : No run task executed or setpoint has been reached. 1: Movement being made toward specified position.					
StandStill On_Speed		chapter 3.7.2, speed reach Tpeed is set b The drive has Specified spe The tolerance	Control Byte d. individual co ot reached its from the pro ies within the	atus Byte ands in point sp s image rgetWind	lbox mode an been reached Speed target	the run dow.	
Direction Reference_OK PreCalc_ACK Error		hapter 3.7.2, hapter 3.7.2, hapter 3.7.2, hapter 3.7.2,	Control Byte, Control Byte, Control Byte, Control Byte,	tus Byte			

Control Byte C3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Quit	Setup Speed Active	0	0	Direction _Neg	Direction Pos	0	0
Direction Direction SetupSpee Reset_Qui 0		pter 3.7 pter 3.7 pter 3.7 pter 3.7 d	ontrol B ontrol B ontrol B ontrol By	Status Byte" Status Byte" Status Byte". Status Byte".			

Status Byte S3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset	Setup Speed_ Active ACK	Input6	Input5	Input4	Input3	Input2	Input1
Input1 See chapter 3.7.2, "Control Byte, Status Byte".							
Input2 See chapter 3.7.2, "Control Byte, Status Byte".							
Input3 See chapter 3.7.2, "Control Byte, Status Byte".							
Input4 See chapter 3.7.2, "Control Byte, Status Byte".							
Input5 See chapter 3.7.2, "Control Byte, Status Byte".							
Input6 See chapter 3.7.2, "Control Byte, Status Byte".							
SetupSpeed_Active_ See chapter 3.7.2, "Control Byte, Status Byte".ACK							
Reset See chapter 3.7.2, "Control Byte, Status Byte".							

3.11.1.4.2 Single Positioning Sequence Diagram

Fig. 3.11.1-2: Sequence diagram for single positioning
g067x21x

(1)	The module is ready for operation when no error is present after setting of Enable.
(2)	An operating mode can be selected when Stop_N_ACK has been set.
(3)	Operating mode Single positioning is selected.
(4)	The single positioning mode has been accepted by the module.
(5)	The drive is started by the Start rising edge.
(6)	The setpoint from the process image is accepted and movement made toward the target position. Start can be canceled after Start_ACK has been set.
(7)	The drive has reached its target position.
(8)	The drive is restarted by the Start rising edge.
(9)	The current setpoint from the process image is accepted, the patch recalculated and movement made toward the target position, where applicable, on the fly. Start can be canceled after Start_ACK has been set.

WAGO-I/O-SYSTEM 750

3.11.1.5 Referencing Mode

The mode must first be activated using Command[]=4. The referencing mode is active when the Command_ACK[]=4 bit is set.

Furthermore, the Direction_Neg bit must be set if the reference motion is to be started in negative direction, or correspondingly, the Direction_Pos if the reference motion is to be started in positive direction. The direction for the reference switch and information detailing whether movement is to be made to the reference switch or a limit switch, specified by the Reference_Mode configuration parameter.

If a reference run is started via the mailbox with the move command START_REFERENCING, the referencing velocity, starting direction, moving direction for the reference switch and the information specifying whether movement is to be made toward a reference switch or limit switch, are transferreed as parameters.

The reference run is always performed at the setup speed SpeedSetup and at the setup acceleration SetupAcceleration.

Note

The referencing speed should be low in order to take the mechanical requirements into account (e.g., length of limit switch cams, residual travel after final shutdown, etc).

The reference run is initiated by the rising edge of the start. The drive starts up, or frequency is output, directly after the setpoints are accepted. The On_Target bit is canceled immediately and is not set again.

From the start to the end of the reference motion, the Busy bit is set.
If a limit switch is detected prior to reaching the reference switch, the reference motion is continued in the opposite direction. If prior to the detection of the reference switch a limit switch is detected again, the referencing process is terminated with an error message.

If the drive is at a limit switch it will not move further.
In Mailbox mode, the call of the command START_REFERENCING is acknowledged by error message 23 .
No error message is issued in the Referencing mode. In this case, the ERR_RANGE_NEG, or ERR_RANGE_POS bit is set and can then be evaluated.

3.11.1.5.1 Referencing Process Image

The operating mode process image is shown in the following tables:

Control Byte C1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command							Start
Stop2_N	Enable						

Stop2_N See chapter 3.7.2, "Control Byte, Status Byte".
Start
Startup of drive.
The drive is started in the selected mode on a positive edge.
$0 \rightarrow 1 \quad$ The drive is started accordingly on the rising edge.
The reference motion is initiated.
If the reference run is still in operation, the (new) setpoints are again accepted and calculated (same procedure as for positioning).
The reference run is newly initiated.
Command
Selecting the operating mode
0 : Idle mode
4: Reference motion

Control Byte C2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error Quit	PreCalc	X	X	Acc_Range_Sel		Freq_Range_Sel	
Freq_Range_Sel See chapter 3.7.2, "Control Byte, Status Byte". Acc_Range_Sel See chaptet 3.7.2, "Control Byte, Status Byte". PreCalc See chapter 3.7.2, "Control Byte, Status Byte". Error_Quit See chapter 3.7.2, "Control Byte, Status Byte". X Reserved							

3.11.1.5.2 Sequence Diagram for Referencing

Fig. 3.11.1-3: Sequence diagram for referencing
g067x23x

(1)	The module is ready for operation when no error is present after setting of Enable.
(2)	An operating mode can be selected when Stop_N_ACK has been set.
(3)	Referencing mode is selected.
(4)	The Referencing mode has been accepted by the module.
(5)	The drive is started by the Start rising edge.
(6)	The reference motion is initiated. Start can be canceled if Start_ACK has been set.
(7)	The reference point has been moved to and set.

WAGO-I/O-SYSTEM 750
I/O Modules

3.11.1.5.3 Start Parameters for Referencing Mode

Referencing to positive end of reference switch, starting in negative direction

Operating mode				Note
Referencing,$\text { M_Reference = } 1$		Mailbox, Command START_ REFERENCING		
Reference_Mode , Bit 0	0	Parameter 3 Bit 0	0	Referencing to reference switch
Direction_Pos	0			
Direction_Neg	1	Parameter 3 Bit 1	0	Start in negative direction
Reference_Mode , Bit 1	1	Parameter 3 Bit 2	1	Referencing to positive end

Fig. 3.11.1-4: Referencing to positive end of reference switch, with start in negative direction from positive movement range

Fig. 3.11.1-5: Referencing to positive end of reference switch, with start in negative direction from negative movement range

Fig. 3.11.1-6: Referencing to positive end of reference switch with start in negative direction from limit switch

Note

The drive does not begin on a start from the limit switch. In the Mailbox mode the error message 23 is generated on calling of command START_REFERENCING. No error message is generated in the Referencing mode. The Bit ERR RANGE POS or ERR RANGE NEG bit is set!

Referencing to negative end of reference switch, starting in negative direction

Operating mode				Note
Referencing, M_Reference = 1		Mailbox, Command START_ REFERENCING		
Reference_Mode , Bit 0	0	Parameter 3 Bit 0	0	Referencing to reference switch
Direction_Pos	0	Parameter 3 Bit 1	0	
Direction_Neg	1			
Reference_Mode , Bit 1	0	Parameter 3 Bit 2	0	Referencing to negative end

Fig. 3.11.1-7: Referencing at the negative end of reference switch with start in negative direction from positive movement range

Fig. 3.11.1-8: Referencing at the negative end of reference switch with start in negative direction from negative movement range

Fig. 3.11.1-9: Referencing at negative end of reference switch with start in negative direction from reference switch

Note
On a start from the reference switch, the module first reverses the starting direction to ensure that the reference switch is free.

Referencing to positive end of reference switch, starting in positive
direction

Operating mode				Note
Referencing, M_Reference = 1		Mailbox, Command START_ REFERENCING		
Reference_Mode , Bit 0	0	Parameter 3 Bit 0	0	Referencing to reference switch
Direction_Pos	1	Parameter 3 Bit 1	1	
Direction_Neg	0			
Reference_Mode , Bit 1	1	Parameter 3 Bit 2	1	Referencing to positive end

Fig. 3.11.1-10: Referencing at positive end of reference switch with start in positive direction from positive movement range

Fig. 3.11.1-11: Referencing at positive end of reference switch with start in positive direction from positive movement range; reference switch not found

Referencing to limit switch starting in negative direction

Operating mode				Note
Referencing, M_Reference = 1		Mailbox, Command START_ REFERENCING		
Reference_Mode , Bit 0	1	Parameter 3 Bit 0	1	Referencing to limit switch
Direction_Pos	0	Parameter 3 Bit 1	0	Start in negative direction
Direction_Neg	1			
Reference_Mode , Bit 1	x			

Fig. 3.11.1-12: Referencing to limit switch starting in negative direction from positive limit switch
g067x39e

Fig. 3.11.1-13: Referencing to negative limit switch starting in negative direction from positive movement range

Fig. 3.11.1-14: Referencing to limit switch starting in negative direction from negative limit switch

3.11.1.6 JogMode and SteppingMode

The drive can be run manually at the defined setup speed when the Jog mode is active. Control is implemented via Direction_Pos or Direction_Neg. The two control bits are locked against each other. The run is ended when the set timeout period (stepping mode) expires via the process image. A timeout of zero allows unlimited movement, as long as Direction_Pos or Direction_Neg is set (JogMode).

If the setup speed is parameterized as zero, the JogMode is run at speed 1.
If movement is made to a limit switch during the JogMode, the drive will stop. After that, movement can only be made away from the limit switch.

The drive stops when it leaves the movement range defined by the parameter Drive_Range_Neg and Drive_Range_Pos. The drive can then be operated outside the movement range using a repeated JOG command.

3.11.1.6.1 JogMode and SteppingMode Process Image

This process image is different from the standard configuration for stepper positioning control and is shown in the table below.

Off- set	Input data		Output data	
0	S0	Status byte S0	C0	Control byte C0
1	Reserved	Reserved		
2	D0	Current velocity (LSB)	D0	Reserved
3	D1	Current velocity (MSB)	D1	Reserved
4	D2	Reserved	D2	Timeout (LSB)
5	D3	Reserved	D3	Timeout (MSB)
6	D4	Current position (LSB)	D4	Reserved
7	D5	Current position	D5	Reserved
8	D6	Current position (MSB)	D6	Reserved
9	S3	Status byte S3	C3	Control byte C3
10	S2	Status byte S2	C2	Control byte C2
11	S1	Status byte S1	C1	Control byte C1

The meaning of the control and status bytes is given in the following tables:

Control Byte C1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command					Start	Stop2_N	Enable
Enable Stop2_N Start		See chapter 3.7 See chapter 3.7.2, Startup of drive The drive is sta An error messa $0 \rightarrow 1 \quad$ The dri No effe The driv (Jog_N The inp An erro	ntrol By ntrol By the sele nerated arted ac arted in outputs ge is ge	tus Byte tus Byte ode on edge is ly on th de by d freely d.	e edge pted. edge. ia Input gured.	og_Pos) or In	
Command		$\begin{array}{ll}\text { Selecting the op } \\ 0: & \text { Idle mo } \\ \text { 8: } & \text { JogMod } \\ \text { The dri } \\ \text { Control } \\ & \end{array}$	mode be opera ormed v	nually	tup spe	og_Neg)	

Status Byte S1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command_Ack					$\begin{aligned} & \text { Start } \\ & \text { ACK } \end{aligned}$	Stop_N ACK	Ready
Ready Stop N ACK Start_ACK		See chapter 3.7.2, "Control Byte, Status Byte". See chapter 3.7.2, "Control Byte, Status Byte". Start sequence in the operating mode. 0 : This bit is also set to 0 when the Start request is canceled. 1: The rising edge function is a function of the selected operating mode. No effect. Handshake not performed.					
Command_Ack	Confirmation: selection of operating mode 0 : Idle mode is selected 8: JogMode active						

Control Byte C2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
ErrorQuit	PreCalc	X	X	Acc	e_Sel	Freq	_Sel
Freq_Range_Sel Acc_Range_Sel PreCalc		0: Each setpoint that is transmitted via cyclic telegram traffic must be accepted and processed. A possibly pre-calculated movement process will be discarded. A movement sequence can be calculated and started using Start. The setpoints from the cyclic telegram traffic are ignored and the setpoint saved for the $0 \rightarrow 1$ edge used instead. If the starting speed is zero, a movement sequence will be calculated in advance using this setpoint; this sequence can then be started with the normal delay using Start.					
$\begin{aligned} & \text { Error_Quit } \\ & \text { X } \end{aligned}$		See chapter 3.7.2, "Control Byte, Status Byte".Reserved					

Status Byte S2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error	PreCalc ACK	Referenc e OK	Direction	On Speed	StandStill	Busy	$\begin{aligned} & \text { On_- } \\ & \text { Target } \end{aligned}$
On_Target	Target reached. The significance of this bit depends on the selected operating mode. 0 : A new mode will be selected, or a movement made to a new position. The bit is not used in this mode and remains at 0 .						
Busy	Run task is executed and setpoint is not yet reached. The selected mode is active and a task has been started; the drive is rotating, or frequency output is not equal to 0 . 0 : No run task executed or setpoint has been reached. The drive has been started up using the pushbutton and is rotating.						
StandStill On_Speed		chapter 3.7.2, speed reach Speed is set by The drive has The drive has SetupSpeed h The tolerance	Control Byte, d individual co not reached its reached its set been reached ies within the	tus Byte mands in point spe nt speed. rgetWind	lbox mode and Speed target	the run dow.	
Direction Reference_OK PreCalc_ACK		chapter 3.7.2, chapter 3.7.2, chapter 3.7.2,	Control Byte, Control Byte, Control Byte,	tus Byte			
Error	See chapter 3.7.2, "Control Byte, Status Byte".						

Control Byte C3								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset_ Quit	0	0	0	Direction _Neg	Direction _Pos	0	SetActual _Pos	
SetActual_Pos	See chapter 3.7.2, "Control Byte, Status Byte". Sirection_Pos See chapter 3.7.2, "Control Byte, Status Byte". See chapter 3.7.2, "Control Byte, Status Byte". Direction_Neg Reset_Quit	Sechapter 3.7.2, "Control Byte, Status Byte". 0 Reserved						

Status Byte S3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset	Warning	Input6	Input5	Input4	Input3	Input2	Input1
Input1	See chapter 3.7.2, "Control Byte, Status Byte".						
Input2	See chapter 3.7.2, "Control Byte, Status Byte".						
Input3	Status for Input 3 .						
	Input DI3 is used for JogMode in the default settings.						
	0 : The drive shall not move in positive direction.						
	1: Drive should move in a positive direction. If Input4 is set simultaneously, the drive is turned off.						
Input4	Status for Input 4.						
	Input DI4 is used for JogMode in the default settings.						
	0 : The drive shall not move in negative direction.						
	1: Drive should move in a negative direction.If Input3 is set simultaneously, the drive is turned off.						
Input5	See chapter 3.7.2, "Control Byte, Status Byte".						
Input6	See chapter 3.7.2, "Control Byte, Status Byte".						
Warning	See chapter 3.7.2, "Control Byte, Status Byte".						
Reset	See chapter 3.7.2, "Control Byte, Status Byte".						
X	Reserved						

WAGO-I/O-SYSTEM 750 I/O Modules

3.11.1.6.2 JogMode and SteppingMode Sequence Diagram

Fig. 3.11.1-15: Sequence diagram, JogMode
g067x24x

(1)	The module is ready for operation when no error is present after setting of Enable.
(2)	An operating mode can be selected when Stop_N_ACK has been set.
(3)	The JogMode is selected.
(4)	The JogMode has been accepted by the module.
(5)	The drive is activated by the Start rising edge.
(6)	The Jog mode is activated, the drive can be started using the pushbutton Direction_Pos and Direction_Neg. Start can be canceled if Start_ACK has been set.
(7)	The drive is restarted by the Start rising edge.
(8)	The Jog mode is activated, the drive can be started using the pushbutton Direction_Pos and Direction_Neg. Start can be canceled if Start_ACK has been set.

3.11.1.7 Run Program Operating Mode

A Run program can be downloaded to the I/O module via the mailbox.
The available commands for this are given in the chapter 4.3, „Commands for Move Mode".

First, the mode must be activated using M_Program. The Run program mode is active when the M_Program_ACK bit is set.

The Run program is started on a rising edge.
The address of the first command to be executed is transferred via the process image.

The Program_Running bit is set from the time of start to the end of the program. This bit can be queried using the mailbox command GET_BIT.

The On_Target and Busy bits are controlled by the individual program commands.

When the bit SetupSpeed_Active_ACK is set at the same time for setup, speed is limited to the defined setup speed.

3.11.1.7.1 Run Program Process Image

This process image is different from the standard configuration for stepper positioning control and is shown in the table below.

Off- set	Input data		Output data	
0	S0	Status byte S0	C0	Control byte C0
1	Reserved		Reserved	
2	D0	Current velocity (LSB)	D0	Reserved
3	D1	Current velocity (MSB)	D1	Reserved
4	D2	Current value for command counter (LSB)	D2	Starting value for command counter (LSB)
5	D3	Current value for command counter (MSB)	D3	Starting value for command counter (MSB)
6	D4	Current position (LSB)	D4	Reserved
7	D5	Current position	D5	Reserved
8	D6	Current position (MSB)	D6	Reserved
9	S3	Status byte S3	C3	Control byte C3
10	S2	Status byte S2	C2	Control byte C2
11	S1	Status byte S1	C1	Control byte C1

The meaning of the control and status bytes is given in the following tables:

Status Byte S1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command_Ack					$\begin{aligned} & \text { Start } \\ & \text { ACK } \end{aligned}$	Stop N ACK	Ready
Ready Stop N ACK Start ACK		See chapter 3.7.2, "Control Byte, Status Byte". See chapter 3.7.2, "Control Byte, Status Byte". Start sequence in the operating mode. 0 : This bit is also set to 0 when the Start request is canceled. 1: The rising edge function is a function of the selected operating mode. Run program The run program has been started.					
Command_Ack		mation: se Idle mode Run prog The Run	on of ope lected mode activ	mode	mmand o	next rising	e for Start

Control Byte C2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error Quit	PreCalc	X	X	Acc	_Sel	Freq	_Sel
 Freq_Range_Sel See chapter 3.7.2, "Control Byte, Status Byte". Acc_Range_Sel See chapter 3.7.2, "Control Byte, Status Byte". Pre_Calc See chapter 3.7.2, "Control Byte, Status Byte". Error_Quit See chapter 3.7.2, "Control Byte, Status Byte". X Reserved							

Status Byte S2								
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Error	PreCalc_ ACK	Referenc e_OK	Direction	On_- Speed	StandStill	Busy	On_ Target	

Target reached.
The significance of this bit depends on the selected operating mode.
0: A new mode will be selected, or a movement made to a new position.
1: The specified setpoint within the TargetWindowPosition target window has been reached.
Busy Run task is executed and setpoint is not yet reached.
The selected mode is active and a task has been started;
the drive is rotating, or frequency output is not equal to 0 .
0 : No run task executed or setpoint has been reached.
The current Run program is being executed.
StandStill See chapter 3.7.2, "Control Byte, Status Byte".
On_Speed Drive speed reached
On_Speed is set by individual commands in mailbox mode and in the run program.
0 : The drive has not reached its setpoint speed.
1: The drive has reached its setpoint speed.
Specified speed from the process image has been reached.
The tolerance lies within the TargetWindowSpeed target window.

Direction
Reference OK
PreCalc_ACK
Error

See chapter 3.7.2, "Control Byte, Status Byte".

WAGO-I/O-SYSTEM 750

Control Byte C3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Quit	0	0	0	Direction _Neg	Direction Pos	0	SetActual Pos
SetActual_Pos Direction Pos Direction_Neg Reset_Quit 0		apter 3.7 pter 3.7 apter 3.7 apter 3.7 ed	ontrol B ontrol B ontrol B ontrol B	Status Byte" Status Byte" Status Byte" Status Byte".			

3.11.1.7.2 Sequence Diagram for Run Program

Fig. 3.11.1-16: Sequence diagram, Run program
g067x22x

(1)	The module is ready for operation when no error is present after setting of Enable.
(2)	An operating mode can be selected when Stop_N_ACK has been set.
(3)	The Run program mode is selected.
(4)	The Run program mode has been accepted by the module.
(5)	The drive is started by the Start rising edge.
(6)	The Run program is started on the first command. Start can be canceled if Start_ACK has been set.
(7)	The current Run program has reached its last position.
(8)	The drive is restarted by the Start rising edge.
(9)	The Run program in progress will be terminated and the drive set to standstill. The Run program is then restarted on the first command. Start can be canceled if Start_ACK has been set.

WAGO-IIO-SYSTEM 750
I/O Modules

3.11.1.7.3 Example of Run Program

In this example of a Move program, first the velocity (20000) and then the acceleration (3000) is set. After this, a "True" signal is anticipated at Input 1 on line 2. If the signal is "True", movement is made to Position 1 (specified position $=65065$) and then the system waits for a "False" signal at input 1 on line 4. If the "False" signal is received, movement is made to Position 2 (specified position $=0$). The system then returns to line 2 of the Move program, i.e. it waits for a "True" signal at Input 1.

Line in the run table	Opcode	Data (LSB)	Data	Data (MSB)	Meaning
0	MB3	MB4	MB5		
1	0×25	0×20	$0 \times 4 \mathrm{E}$	0×00	Set velocity to 20000
2	0×71	0×30	0×01	0×00	Query, Input $1=$ " 1 "
3	0×02	0×20	$0 \times F E$	0×00	Move to position 65065
4	0×71	0×30	0×00	0×00	Query, Input $1=$ "0"
5	0×02	0×00	0×00	0×00	Move to position 0
6	$0 \times F 5$	0×02	0×00	0×00	Go to line 2
7	0×70	$0 \times D 0$	0×07	0×00	Wait 2000 ms

3.11.1.7.4 Autostart

An existing Run program is started automatically after a module reset when the configuration bit HwSwConfig.Program_AutoStart (Bit 7) is set.

Prerequisites for successful automatic start:

- Valid Run program present in EEPROM,
- The HwSwConfig.Program_AutoStart bit is set in the configuration,
- The Rest status bit is set and has not yet been canceled,
- The Ready status bit is set,
- The Stop_N_ACK status bit is set.

A Run program started by HwSwConfig.Program_AutoStart can be ended by canceling Reset. The bit is reset by Reset_Quit.

A Run program is started only one time after each reset by HwSwConfig.Program_AutoStart.

A Run program started with HwSwConfig.Program_AutoStart is always started at an address of 0 .

3.11.1.8 Rotary Axis Operating Mode

The "Rotary axis" function is activated by the parameter Rotary_Axis_Period being written with a value other than zero. If the Rotary_Axis_Period parameter is zero, a linear and limited movement range is assumed.

The position is repeated with a rotary axis every 2π or 360°. The Rotary_Axis_Period parameter indicates how many motor steps correspond to one rotation around the axis by 2π or 360 .

The actual value for rotary axis is always within the range $0 \ldots$
Rotary_Axis_Period. This ensures that no internal overrun occurs with relative motion repeated any number of times.

Parameter	Linear axis	Rotary axis					
Rotary_Axis_Period	0	Micro steps per rotation >0		Operating range	Drive_Range_Neg		
:---	:---	:---	:---				
\ldots							
Drive_Range_Pos	Limited to Drive_Range_Neg_.. Drive_Range_Pos when Drive_Range_Neg $>=0$ or Drive_Range_Pos < Rotary_Axis_Period, otherwise unrestricted						
Actual value	Operating range	$0 \ldots$ Rotary_Axis_Period, periodic					
Set value	Operating range	Absolute Positioning: $0 \ldots$ Rotary_Axis_Period	Relative Positioning: $-8388607-8388607$. Can be repeated any number of times. No internal overrun				

When specifying the parameters for the rotary axis, the following restriction must be observed for the function to be implemented correctly.

$$
v \leq \frac{\text { Speed_Div }}{\text { Speed_Mult }} * \frac{\text { Freq_Div }}{80} * 10^{3} * p
$$

v	Maximum allowed setpoint speed
p	Rotary axis periods (parameter 64, Rotary_Axis_Period) Speed_Mult
Scaling factor for setpoint speed (parameter 28 from configuration table)	
Speed_Div	Scaling factor for setpoint speed (parameter 30 from configuration table)
Freq_Div	Prescaler for maximum speed (parameter 4 from configuration table)

The setpoint definition principally differentiates between absolute and relative positioning.

3.11.1.8.1 Relative Positioning

The target position is added to the current position for relative positioning. In the calculation, the operating mode "Round axis" is ignored at first, hence the "virtual target" may be outside the range $0 \ldots 2 \pi$. This allows relative positioning to be performed over several revolutions. The actual value, however, is reported only within the range $0 \ldots 2 \pi$; the number of completed revolutions can not be determined.

The motion direction depends on the qualifying symbol of the relative setpoint value.

3.11.1.8.2 Absolute Positioning

The target position is always within the range $0 \ldots 2 \pi$ for absolute positioning. A setpoint defined outside of this range will result in an error.

On a movement task from standstill, the system determines in what direction the target can be reached in the shortest time.

At a positioning motion with a start speed or a target speed, the motion direction is selected requiring none or the least number of direction changes.

Absolute positioning permits braking at a certain velocity setting to a precisely defined spot (e.g. coil end that is to be stopped exactly at an attitude angle of 0 from full speed, only possible via mailbox!).

3.11.1.9 Camshaft Operating Mode

The camshaft provides pulses as a function of position for nine (9) channels CAM1 ... CAM9. Up to 50 switching positions can be freely defined through channels $1 \ldots 8$. Channel CAM9, on the other hand, supplies a periodic signal as a function of position.

Parameterization of channels $1 \ldots 8$ is performed using a table containing 50 entries. Each entry consists of a position xp (24-bit) and a bit sample (8-bit). The bit samples each describe the position of the eight output channels CAM1 ... CAM8, which is valid starting from the assigned position xp up to the next larger position entry $\mathrm{xp}+1$.

The table entries are sorted in ascending order of the positions.
For positions below the first entry, the bit pattern of the first entry is shown.
The starting position, the cam width and the repeat period are assigned to channel 9 via the configuration.

Except for the reset condition, the activated camshaft is always active independent from the motion operation.

Contrary to other setpoint values, the switching positions of the camshaft are always shown in the unit "micro step". A conversion to or from user-specific units has not been projected.

The camshaft table cannot be edited in the terminal, but must be downloaded as a whole.

Example: Eight (8) entries are to be loaded to the camshaft table.

Step No.	CAM								Position			Outputs
	8	7	6	5	4	3	2	1	Byte 4 MB5	Byte 3 MB4	Byte 2 MB3	Byte 1 MB 3
1	1	0	0	0	0	1	0	0	0x00	$0 \times 2 \mathrm{e}$	0xe0	0x84
2	0	1	0	0	0	1	0	0	0x00	0x5d	0xc0	0x44
3	0	0	1	0	0	0	1	0	0x00	0xbb	0x80	0x22
4	0	0	0	1	0	0	1	0	0x01	0x77	0x00	0x12
5	0	0	0	0	1	0	0	0	0x01	0xd4	0xc0	0x08
6	0	1	0	0	0	1	0	0	0x02	0x90	0x40	0x44
7	0	1	0	0	0	0	1	0	0x07	0xb0	0xc0	0x42
8	0	1	0	0	0	0	0	1	0x07	0xdf	0xa0	0x41

The grey-shaded part of the table must be downloaded into the terminal.
In addition, the checksum for the table must be calculated. For this, the sum across all bytes is determined. Here, the checksum is $0 x b 0 \mathrm{~d}$.

Opcodes given in chapter 4.2.4.4, „Table Management Commands" are required for downloading.

The corresponding Opcodes are adjusted for this case in the table below. The complete scope and significance are described in the chapter indicated above.

3.11.1.10 Position Table Operating Mode

The position table permits a fixed run motion process with variable positions.
The position table stores up to 50 positions which can be invoked by motion commands.. The position table entries can be evaluated by absolute or by relative motion commands.

The position table can be downloaded. As an alternative to this, individual entries can be written or "taught" as absolute or relative positions with the current position.

3.11.1.10.1 Teaching of Positions

Teaching of positions using the mailbox command POS_TABLE_TEACH allows the current actual value to the saved in the position table so that it is available as a target for a Move task.

The current actual value can be saved as the reference point for relative travel measurement.

The soft limit switches Drive_Range_Pos and Drive_Range_Neg can also be taught.

3.11.1.11 Speed Control Operating Mode

The Frequency/Speed Control application represents a variant of stepper control. The basic functions for stepper control can still be utilized. The basic difference is the modified process image, which permits specification of frequency and speed. Speed corresponds directly to the output frequency and the frequency ramps to acceleration.

In this module, the stepper motor is operated with the default rotational speed.
The frequency/speed control system generates a definable motor rotational speed. This rotational speed can be preset via process image, the JOG mode, motion command via mailbox and by program operation, as are single positioning / stepper control.

Alternatively, the Frequency/Speed Control application is also feasible with the function "Rotary axis". If the rotary shaft configuration value does not have a parameter of zero, a value of 100000 is assumed.

The Frequency/Rotational Speed Control application is selected by selecting the Command[]=3 operating image in the cyclic process image.

In Frequency Speed Control, the position recognition operates in the background. To prevent this from triggering a shutdown via the soft limit switches with Drive_Range_Pos or Drive_Range_Neg, the parameters Rotary_Axis_Period can be used and parameters provided or simulated for a
rotary axis. If parameters have been provided for the value Rotary_Axis_Period, this value is used for the rotary axis.

The Drive_Range_Neg and Drive_Range_Pos software limit switches are also active in rotary axis mode.

If no movement range limit is desired, these parameters must lie outside the rotary axis range defined by the Rotary_Axis_Period parameter.

Step positioning/Stepper control contains a detailed description of this (selection of mode and accepting of setpoints with Start).

The Frequency/Speed Control application essentially influences speed interpretation in the process image and the evaluation of Rotary_Axis_Period. Otherwise, the complete functions of other modes, such as JogMode, referencing, run task via mailbox and program mode can be utilized.

3.11.1.11.1 Velocity Control Process Image

This process image is different from the standard configuration for stepper positioning control and is shown in the tables below.

Off- set	Input data		Output data	
0	S0	Status byte S0	C0	Control byte C0
1	Reserved	Reserved		
2	D0	Actual Velocity L	D0	Velocity L
3	D1	Actual Velocity H	D1	Velocity H
4	D2	Reserved	D2	Acceleration L
5	D3	Reserved	D3	Acceleration H
6	D4	Actual position L	D4	Reserved
7	D5	Actual position M	D5	Reserved
8	D6	Actual position H	D6	Reserved
9	S3	Status byte S3	C3	Control byte C3
10	S2	Status byte S2	C2	Control byte C2
11	S1	Status byte S1	C1	Control byte C1

The function of the bits in control bytes $\mathrm{C} 1 \ldots \mathrm{C} 3$ and status bytes $\mathrm{S} 1 \ldots \mathrm{~S} 3$ is determined by the Frequency/Speed Control application. When switchover is made to this application, the linked locations for the old application are retained.

The meaning of the control and status bytes is given in the following tables:

Control Byte C1							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Command					Start	Stop2_N	Enable
Enable Stop2 N Start	See chapter 3.7.2, "Control Byte, Status Byte". See chapter 3.7.2, "Control Byte, Status Byte". Startup of drive. The drive is started in the selected mode on a positive edge. If the edge is not accepted (in the Jog or Mailbox mode), an error message is generated. $0 \rightarrow 1$: The drive is started accordingly on the rising edge. The specified setpoints have been accepted from the process image. Movement is made directly to the new target, even if the drive is already turning. A previously calculated movement sequence is started immediately when the PreCalc_ACK bit is set (instant setpoint switch).						
Command		g the op eed Con	g mode.				

Control Byte C2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error_ Quit	PreCalc	0	0	Acc_Range_Sel	Freq_Range_Sel		

Freq_Range_Sel See chapter 3.7.2, "Control Byte, Status Byte"
Acc_Range_Sel See chapter 3.7.2, "Control Byte, Status Byte".
PreCalc
The setpoints are taken from the process image and, where required, a movement sequence precalculated. This bit must only be used in the speed control mode.
In the other operating modes, the bit must be set to 0 .
0 : Each setpoint that is transmitted via cyclic telegram traffic must be accepted and processed. A possibly pre-calculated movement process will be discarded. A movement sequence can be calculated and started using Start.
1: The setpoints from the cyclic telegram traffic are ignored and the setpoint saved for the $0 \rightarrow 1$ edge used instead. If the starting speed is zero, a movement sequence will be calculated in advance using this setpoint; this sequence can then be started with the normal delay using Start.

See chapter 3.7.2, "Control Byte, Status Byte".
Reserved

Status Byte S2							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Error	PreCalc ACK	Referenc e OK	Direction	On Speed	StandStill	Busy	On Target
The significance of this bit depends on the selected operating mode. 0 : A new mode will be selected, or a movement made to a new position. X The bit On_Target has no function in this operating mode							
The selected mode is active and a task has been started; the drive is rotating, or frequency output is not equal to 0 . 0 : No run task executed or setpoint has been reached. 1: Specified speed not yet reached.							
StandStill On_Speed		hapter 3.7.2, speed reach Speed is set by The drive has Specified spe The tolerance	Control Byte d. individual co ot reached it from the pro ies within the	atus Byte mands in tpoint sp ss image rgetWin	lbox mode an been reached Speed target	the run dow.	
Direction Reference_OK PreCalc_ACK Error		hapter 3.7.2, hapter 3.7.2, hapter 3.7.2, hapter 3.7.2,	Control Byte, Control Byte, Control Byte, Control Byte,	atus Byte			

Control Byte C3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Quit	0	0	0	Direction _Neg	Direction _Pos	0	SetActual Pos
SetActual Po Direction Pos Direction_Neg Reset_Quit 0		apter 3.7 apter 3.7 apter 3.7 apter 3.7 d	ontrol B ontrol B ontrol B ontrol B	Status Byte" Status Byte". Status Byte". Status Byte".			

Status Byte S3							
Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset	Warning	Input6	Input5	Input4	Input3	Input2	Input1
Input1 See chapter 3.7.2, "Control Byte, Status Byte".							
Input2	See chapter 3.7.2, "Control Byte, Status Byte".						
Input3	See chapter 3.7.2, "Control Byte, Status Byte".						
Input4	See chapter 3.7.2, "Control Byte, Status Byte".						
Input5	See chapter 3.7.2, "Control Byte, Status Byte".						
Input6	See chapter 3.7.2, "Control Byte, Status Byte".						
Warning	See chapter 3.7.2, "Control Byte, Status Byte".						
Reset	See chapter 3.7.2, "Control Byte, Status Byte".						

3.11.2 Move Mode via Mailbox

The mailbox must first be displayed. This is described in chapter 3.8, „Mailbox Operation".

After that, the Move commands via mailbox mode must be activated. This is accomplished by setting bit 7 in the control byte C 1 .

Only then, the motion commands can be given.

3.11.2.1 Run Commands

The module can be operated with the mailbox by using the move commands. Movement can be made directly to different positions. This command is accepted only when the mode Move mode via mailbox has been activated.

Available commands for run mode are can be found in chapter 4.3, "Commands for Move Mode".

3.11.3 Limitation of Moving Range

3.11.3.1 Hardware, Limit Switch

The hardware limit switches are active in the Positioning and Velocity control applications. These devices limit the movement path.

Any allocation of limits switches to the direction of movement must be maintained. The negative hardware limit switch (LimitSwitch_Neg bit) is linked to Input6 by default and restricts the range to smaller positions; i.e. in the negative direction.
The positive hardware limit switch (LimitSwitch_Pos bit) is linked to Input5 by default and restricts the range to larger positions; i.e. in the positive direction.

Positioning

If movement is made to a limit switch in the Positioning mode, the drive will brake the movement until standstill using the defined deceleration Acceleratio_Stop_Fast.
The drive can only be started in the Jog and Referencing modes when it is located at a limit switch.

JogMode

If movement is made to a limit switch in the JogMode, the drive will brake the movement until standstill using the defined deceleration Acceleratio_Stop_Fast.
The drive can then be moved away from the limit switch by pressing the "Jog" button Direction_Neg or Direction_Pos again, from the positive limit switch in a negative direction and from the negative limit switch in a positive direction.
The drive will again decelerate to a standstill using the defined deceleration Acceleration_Stop_Fast as soon as it moves away from the limit switch. The drive is then no longer located at the limit switch and can be run in any mode without any restrictions.

Referencing

Warning

The software limit switch does not evaluate limiting of the moving range during the reference run. This may result in damage to the system if proper functioning of the hardware limit switch is not ensured!

If the drive is located at a limit switch in the Referencing mode to a reference switch, it can only be started in the Jog or Referencing mode. Only a negative direction of movement is possible from the positive limit switch and vice versa.

If a reference run has been made to a limit switch in the Referencing mode, the drive will end up at the limit switch and a special operating mode will be activated.
In this special mode, the drive can be moved away from the limit switch in any mode, with the positive limit switch only permitting movement in a negative direction and the negative limit switch in a positive direction. The special mode is terminated 100 ms after the drive leaves the limit switch.

3.11.3.2 Software Limit Switch

The permissible movement range of the drive is limited by the hardware limit switch. Options are also available, however, for restricting the permissible movement range using limits that can be parameterized (software limit switches), for example if no hardware limit switches are available.

Note

Evaluation of the hardware limit switches has priority over evaluation of the software limit switches.

The software limit switches are defined by the limits Drive_Range_Neg and Drive_Range_Pos in the Configuration table. The limit Drive_Range_Neg restricts the range to smaller positions; i.e., in the negative direction. Drive_Range_Pos restricts the range to larger positions; i.e., in the positive direction.

The software limit switches are only active in the Positioning and Run program via mailbox modes, as well as some subfunctions being available in the JogMode. The switches are not evaluated in other modes.

Warning

The software limit switch does not evaluate limiting of the moving range during a reference run. This may result in damage to the system if proper functioning of the hardware limit switch is not ensured!

The limits Drive_Range_Neg and Drive_Range_Pos define the permissible range of movement. If one of these defined limits is violated, the associated bit is set.
The default setting is Drive_Range_Neg = 0x800001 and Drive_Range_Pos = 0x7FFFFF

If movement is made beyond a defined movement range, the drive is brought to standstill using the defined deceleration Acceleration_Stop_Fast and, after that, only those directions of movement accepted that move the unit back into the permissible range; the exception here is the JogMode.

In the JogMode the drive is brought to a standstill each time it attempts to move out of the permissible range. In this mode the drive can also be operated outside the movement range defined by the software limit switches with repeated JOG commands. The software limit switches are not active again until the drive is back within the defined range.

3.11.4 Control of a Motor Brake

Control of the motor brake is conducted using the Brake bit (see chapter 4.5, „Bit Field for I/O Driver").

Control of this bit is performed from two sources that are connected with an OR link.
On the one hand, the brake bit is set automatically as soon as the drive is running and is canceled as soon as the drive is at standstill. Automatic control is configured using the configuration parameters Braketime_Turn_On and Braketime_Turn_Off. The Brake bit is then activated directly after the start of a run command. If the bit has not been set, execution of the move command will, however, be delayed by the Braketime_Turn_On time. The configuration parameter Braketime_Turn_Off defines the deactivation time for the Brake bit. This bit is deactivated before the target is reached by the Braketime_Turn_Off time. The brake can be controlled directly with this bit. The brake is released when the bit is set, and is applied when the bit is canceled.

Fig. 3.11.4-1: Control of motor brake
g067x17e
As an alternative, the brake can also be operated independently using the Brake_Manual bit (see chapter 4.5, „Bit Field for I/O Driver"). This bit can be set and canceled externally and can also, for example, be linked to a camshaft channel so that it is switched as a function of position.

3.12 Diagnostics and Errors

The diagnostics commands allow internal module information to be accessed. This includes:

- Error status of the device,
- Variables and status bits,
- Password,
- Configuration table and
- Position table

3.12.1 Error Messages and Evaluation

Depending on the configuration in synchronous process image, errors and warnings are indicated by the following common error bits:

- Error (S2.7) (see chapter 3.7.2,"Control Byte, Status Byte")
- Error_Quit (C2.7) (see chapter 3.7.2,"Control Byte, Status Byte")
- ERR (S0.6) (see chapter 3.7.2,"Control Byte, Status Byte")

The module has an error memory that can record exactly one error code. The simultaneous occurrence of multiple errors is not supported.

To determine the cause of the error, the error code can be queried via the mailbox. The following commands are available:

Function	Opcode	Meaning	Page
Diagnostics Commands			
DIAG_RD_ERROR	$0 x 49$	Error information is recovered from the error memory.	169
DIAG_QUIT_ERROR	$0 x 4 \mathrm{~A}$	Terminates a device error condition	170

The commands are described in the appendix in chapter 4.2.4.5, "Diagnostics Commands".

3.12.2 Error Acknowledgement

The errors and warnings of all subsystems are analyzed at a central location.
The occurrence of errors and warnings is recorded and leads the device into an error condition.

In the case of error messages, the output stage is terminated immediately. The motor has no torque in this state and is at risk of uncontrolled movements, which can be prevented with an external brake.

The error or warning condition continues until the cause is remedied.

WAGO-IIO-SYSTEM 750
I/O Modules

Note

The bit Error (S2.7) follows statically bit Error_Quit (C2.7). If the cause of the error is not eliminated, the bit Error_Quit is set again!

If no more errors or warnings are reported by the hardware, the error or warning condition can be acknowledged with the positive edge by the control bit Error_Quit or with a mailbox command DIAG_RD_ERROR.

3.12.3 Internal Data Bus Parameterization: Accumulative Diagnostics

Errors/warnings can also be reported in status byte S0, bit 6 (ERR) and thus initiate an acyclic diagnostics message (e.g., via Profibus).
This bit is addressed continuously as long as the error is present and Error_Quite is not set.
Enabling for the indication of errors is set using the configuration parameter ErrorNotificationMode.SystemFlagEnable (parameter 113, bit 0). This bit has the following meaning:

0: Errors are not reported via status byte S0, bit 6 (ERR).
1: \quad Errors are reported via status byte S0, bit 6 (ERR).
Warning displays are enabled using the configuration parameter WarningNotificationMode.SystemFlagEnable (parameter 116, bit 0).

This bit has the following meaning:
0: \quad Warnings are not reported via status byte S 0 , bit 6 (ERR).
1: Warnings are reported via status byte S0, bit 6 (ERR).

3.12.4 Sequence Diagram for Troubleshooting

3.12.4.1 Cause of error was eliminated before acknowledgement

3.12.4.2 Cause of error was not eliminated before acknowledgement

Fig. 3.12.4-2: Sequence diagram for troubleshooting 2
g067226e

3.13 Diagnostics

The diagnostics commands allow internal module information to be accessed. This includes:

- Error status of the device,
- Variables and status bits,
- Password,
- Configuration table and
- Position table

Fig. 3.12.4-1: Advanced diagnostics
g067211e
The commands are elucidated in the appendix in section Diagnostics Commands, „Diagnostics Commands".

The procedures for error correction are described in the appendix to chapter 4.4, "Error Blink Codes".

3.13.1 Internal Status Variables

The module is provided with internal status variable that can be read out using the mailbox command DIAG_RD_VAR. These variables can also be acquired automatically using a data recorder.

The number of the variable determines which source is read:

Variable number	Source
$0-0 \times 1000$	predefined variables are read (see chapter 4.7, „Internal State Variables")
$0 \times 1000 \ldots 0 \times 1100:$	predefined bits $0 \ldots . .0 \times 100$ are read (see chapter 4.5, "Bit Field for I/O Driver")

The status variables are elucidated in the appendix in chapter 4.7, „Internal State Variables".

3.13.2 Data Recorder

The data recorder facilitates the recording of two internal variables in a selectable time grid for a later analysis. 500 values are recorded each time.

The configuration values Trace_Var1 and Trace_Var2 contain the index for the variables to be recorded (see chapter 4.7, "Internal State Variables"). The configuration value Trace_MsecCycleTime denotes the scan (cycle) time in ms.

Configuration values	Meaning
Trace_Var1	Index of the first variable to be recorded
Trace_Var2	Index of the second variable to be recorded
Trace_MsecCycleTime	Scan time in ms

The Trace_Stored bit indicates that a complete data set has been recorded.
A $0 \rightarrow 1$ edge of Trace_Trigger initiates recording when the Trace_Armed bit is set.

A traced (recorded) data set can be read out using an upload command from the table manager (see chapter 3.9, "Table Manager").

Bits	deleted	set
Trace_Stored	No dataset present	Dataset is recorded
TRACE_TRIGGER	$0 \rightarrow 1$ Edge starts the recording	
Trace_Armed	Triggering is disabled, an existing dataset is not overwritten.	Triggering is active, the next trigger event initiates the recording.

The internal bits (see chapter 4.5, „Bit Field for I/O Driver") can be used as triggering sources. This is accomplished by entering the corresonponding link in the configuration table. The control system can also initiate recording using the mailbox commands GET_BIT and SET_BIT. The trigger bits must be linked to the MONE internal bit for this.

3.14 Installation Instructions

The following representation describes the components that are required for a structure that complies with standards.

Additional measures may be necessary, according to the table, depending on whether installation is made in a residential, industrial, or marine area.

Fig. 3.13.2-1: Overview of installation
g067206e

Ref.	Designation	Manufacturer/Item No.	Comments
Fuses			
1	Field supply fuse	E.g., Siba model 172100, 3.15 A medium slow	A fuse must be connected upstream of the 24 V field voltage in feed as an energy limit in case of error.
2	Motor supply fuse	E.g., Wickmann/Littlefuse No. 230 10 A: 2302100000 Manufacturer: Püschel No. 105000 Manufacturer: Siba Model 7000140	To protect the motor voltage supply against reverse polarity, a 5x20 mm micro fuse with the "Super Quick (FF)" shut-down behavior must be connected upstream. The fusing integral i2 t shall not exceed $22 A^{2} \mathrm{~s}$

Ref.	Designation	Manufacturer/Item No.	Comments
Filtering measures to adapt to certain application areas			
3	24VDC filter module	WAGO 750-624	GL 2003 EN61131-2 ${ }^{(1)}$ EN61000-6-2 ${ }^{(2)}$ EN61000-6-3 ${ }^{(2)}$ EN61800-3 (1) If cable length $>30 \mathrm{~m}$ (2) If cable length $>3 \mathrm{~m}$
4	Radio interference filter on 24 VDC Field supply	Schaffner Company FN2060-6-06	GL 2003 EN61000-6-3 EN61800-3 (for implementation in residential area)
5	Radio interference filter on 70 VDC Motor voltage	Schaffner Company FN2080-6-06	GL 2003 EN61131-2 EN61000-6-3 EN61800-3 (for implementation in residential area)
6	Ferrite on 24VDC Field supply	Würth-Elektronik 74271112	GL 2003 EN61000-6-3 EN61800-3 (for implementation in
7	Ferrite on 70 VDC Motor voltage	Würth-Elektronik 74271112	residential area)
EA cables			
8	shielded cable Motor	E.g., LAPP UNITRONIC LIYCY 4 * $0.5 \mathrm{~mm}^{2}$	Depending on software filter, the SURGE pulse is detected as an event.
10	shielded cable digital outputs	E.g., Weydemeyer $\begin{aligned} & 4 \text { * AWG20 C } \\ & \text { UL/CSA Style } 2464 \end{aligned}$	Depending on software filter, the SURGE pulse is detected as an event.
11	Shielded module	WAGO	The WAGO Shield Connection System consists of shielding clamping brackets, bus bars and diverse mounting bases to carry out a variety of constructional systems.

3.15 Connection Example

Fig. 3.13.2-1: Connection example

Note

Observe the star wiring in the 0 V and 0 V _Motor masses!

WAGO-I/O-SYSTEM 750 I/O Modules

3.16 Recommendations to Avoid Overvoltage when Decelerating or Sinking a Vertical Load

During quick deceleration or reversal of the axis, or during sinking of a vertical load, the braking energy is fed back into the motor's current voltage. This can increase the intermediate circuit voltage.

However, both the drive itself and the feeding device, as well as other users of this voltage increase, can still be endangered and should be protected! When the voltage reaches the definable limit value of $\mathrm{U}_{\max }=$ DC_Link_ $\mathrm{U}_{\max }$, the overvoltage error is issued and the motor control is switched off.

A larger power supply unit, additional users or an external condenser must be able to accommodate the energy that has been fed back in. The external condenser must be designed for a voltage of at least 100 V .
$C=\frac{2^{*} W_{\text {mech }}}{U_{\text {max }}{ }^{2}-U_{D C}{ }^{2}}-C_{\text {int }}$
$\mathrm{W}_{\text {mech }} \quad$ Mechanical energy fed back in
$\mathrm{U}_{\text {max }} \quad$ Parameter DC_Link_U \max
UDC Motor supply
$\mathrm{C}_{\text {int }} \quad 400 \mu \mathrm{~F}$

3.17 Information on Motor Selection

3.17.1 Nominal Current

The specifications in the manual for the motor current are peak values. The data sheet specifications for motors must be interpreted as effective values.
In full step operation, there is no difference between effective values and peak values.

However, due to the microsteppings, the stepper controller 750-672 has an approximately sinusoidal current flow.

Example:

A motor should be implemented for the stepper controller 750-672.
The nominal current for continuous operation results in:
$I_{n}=\frac{5 A}{\sqrt{2}}=3,5 A$
This value is the nominal current in the motor's data sheet.
The motor can be implemented in continuous operation without overheating.
The 7.5 A current only applies to the acceleration phases (150\%).

Warning: this current is only delivered for a maximum of 10 s !
The current controller is implemented as a two- or three-point controller. This has the advantage that the controller is always stable and the comparison is simplified. The controller frequency adjusts automatically and changes with the current. The controller frequency is prevented from becoming too high. A controller frequency that is too small leads to a whistle and can be changed as needed with the parameter Current_Ctrl_TZMax.
The motor inductance should lie in the range of a few mH .
The winding resistance should lie in the range of 0.2Ω to 0.8Ω.

3.17.2 Measurement of Motor Inductance

The following equations are tailored quantity equations.
The formula symbols have the following units:
I [A] Motor current (parameter 14, current)
U [V] UDC motor supply
L [mH] Inductance of a cable's motor winding
$\mathrm{f}_{\mathrm{m}}[\mathrm{Hz}]$ Mechanical rotational speed
p [1] Number of pole pairs (typically 50)

1. Requirement for minimum inductance:

The current ripple should not exceed 10% of the motor current.
$L \geq \frac{0,16 * U}{I}$
2. Requirement for maximum inductance:
a) For a good dynamic, the inductance should not become too large.
$L \leq \frac{U}{I}$
b) The self-induction voltage should not exceed $1 / 3$ of the motor voltage.
$L \leq \frac{53}{p * f_{m}} * \frac{U}{I}$
The ranges of acceptable motor inductance are shown in the following graphics for several combinations.

Fig. 3.17.2-1: Range of acceptable motor inductance for $\mathrm{I}=5 \mathrm{~A}$

Fig. 3.17.2-2: Range of acceptable motor inductance for $\mathrm{I}=2.5 \mathrm{~A}$

Fig. 3.17.2-3: Range of acceptable motor inductance for $\mathrm{I}=1 \mathrm{~A}$
g067224e

3.18 Process Priorities

The task of process control is to coordinate timely semi-parallel running processes in a reasonable manner and to divide up the computing time of the microprocessor according to the necessary priorities.
Foreground computing processes have a high priority.
The following table provides an overview of the task system.

Priority	Interrupt	Type	Frequency Type	Execution Time Type	Incorporated Functionality
high	Exception	Exception	-	-	Error message, unknown system status
	Watchdog	Exception	-	-	Error message, watchdog
	Timer $62 \mu \mathrm{~s}$	periodic	16 kHz	$\begin{aligned} & 10 \ldots \\ & 20 \mu \mathrm{~s} \end{aligned}$	- Time measurement - Frequency ramps - Position recognition
	$\begin{aligned} & \text { Timer } \\ & 62 \mu \mathrm{~s} \end{aligned}$	periodic	4 kHz	$20 \mu \mathrm{~s}$	- Set DOs - Filter functions: counter
	Timer 1 ms	periodic	1 kHz	$\begin{aligned} & 70 \ldots \\ & 320 \mu \mathrm{~s} \end{aligned}$	- Position recognition - Analyze DI's - Path segment calculation - Data recorder - Error LED - Current monitoring
low	Slow_Inte rrupt	Background I	-	$\begin{aligned} & 80 \mu \mathrm{~s} \ldots \\ & 7 \mathrm{~ms} \end{aligned}$	- I/O module processing - Control/status bytes - I/O modulemailbox - Status control - Filter functions - Data recorder - Auxiliary functions
none	Backgrou nd	Background II	-	-	- Configuration update

4 Appendix

4.1 Calculation Formulas

4.1.1 Position

4.1.1.1 Full Step Angle

Correlation between the number of full steps and the step angle

$$
N=\frac{360^{\circ}}{\alpha}
$$

N [1] Number of full steps
α [${ }^{\circ}$] Full step angle
Correlation between the number of pole pairs and the full step angle
$\alpha=\frac{180^{\circ}}{\left(p^{*} s\right)}$
$\alpha=\frac{90^{\circ}}{p}$
α [${ }^{\circ}$] Full step angle
p [1] Number of pole pairs
s [1] Line number $\mathrm{s}=2$
A typical industrial motor has a step angle of 1.8° corresponding to 200 full steps and a pole pair number of $\mathrm{p}=50$.

Correlation between electric and mechanical sizes

$$
f_{e}=p^{*} f_{m} \quad \text { or } \quad \omega_{e}=p^{*} \omega_{m} \quad \text { with } \quad \omega=2 * \pi^{*} f
$$

f [1/s] Frequency
p [1] Number of pole pairs
ω_{e} [1/s] Angular frequency of motor current of winding
$\omega_{\mathrm{m}}[1 / \mathrm{s}]$ Angular frequency of axis

4.1.1.2 Rotor Bearing

Correlation between the position specification in the process data and the rotor bearing on the motor axis
$\varphi=360^{\circ} * \frac{s}{64 * N}$
$\varphi\left[^{\circ}\right]$ Rotor bearing, axis angle
s [1] Setpoint position in process image
N [1] Number of full steps

4.1.1.3 Rotary Axis

When specifying the parameters for the rotary axis, the following restriction must be observed for the function to be implemented correctly.

$$
v \leq \frac{\text { Speed_Div }}{\text { Speed_Mult }} * \frac{\text { Freq_Div }}{80} * 10^{3} * p
$$

v	Maximum allowed setpoint speed
p	Rotary axis periods (parameter 64, Rotary_Axis_Period) Speed_Mult Scaling factor for setpoint speed (parameter 28 from configuration table)
Speed_Div	Scaling factor for setpoint speed (parameter 30 from configuration table)
Freq_Div	Prescaler for maximum speed (parameter 4 from configuration table)

4.1.2 Rotational Speed

4.1.2.1 Frequency

Correlation between the internal pulse frequency and the mechanical rotational speed at the motor axis

$$
f_{m}=\frac{1}{p} * \frac{f_{p}}{256}
$$

f_{m} Rotational speed at the motor axis revolutions per second
p Number of pole pairs
f_{p} Internal pulse frequency

4.1.2.2 Frequency Prescaler

The drive speed is identified by the pulse frequency f_{p}

$$
f p=\frac{\text { Velocity } * 80}{\text { Freq_Prescaler }[\mathrm{Hz}]}
$$

f_{p} Pulse frequency
The acceptable velocity range is $1 \ldots 25000$. The setting for the pulse frequency in $[\mathrm{Hz}]$ is given by selecting Freq Prescaler $=80$.

4.1.2.3 Calculation via Internal Pulse Frequency

Correlation between velocity specification in the process data and internal pulse frequency

$$
f_{p}=\frac{\text { Speed_Mult }}{\text { Speed_Div }} * \frac{80 * v}{\text { Freq_Div }}
$$

f_{p} [1/s] Internal pulse frequency in increments per second ${ }^{\wedge} 2$
v [1] Setpoint velocity in process image
Speed_Mult Scaling factor for setpoint velocity (parameter 28 from configuration table)
Speed_Div Scaling factor for setpoint velocity (parameter 30 from configuration table)
Freq_Div Prescaler for maximum velocity
(parameter 4 from configuration table)
Correlation between the internal pulse frequency and the mechanical rotational speed at the motor axis
$f_{m}=\frac{1}{p} * \frac{f_{p}}{256}$
f_{m} [1/s] Rotational speed at the motor axis in revolutions per second
p [1] Number of pole pairs
f_{p} [1/s] Internal pulse frequency in increments per second ${ }^{\wedge} 2$

4.1.2.4 Direct Calculation

Correlation between velocity specification in the process data and mechanical rotational speed at the motor axis

$$
\begin{aligned}
& f_{m}=\frac{1}{p} * \frac{\text { Speed_Mult }}{\text { Speed_Div }} * \frac{v}{3,2 * \text { Freq_Div }} \\
& n_{m}=60 * f_{m}
\end{aligned}
$$

$\mathrm{f}_{\mathrm{m}}[1 / \mathrm{s}] \quad$ Rotational speed at the motor axis in revolutions per second
p [1] Number of pole pairs
v [1] Setpoint velocity in process image

Speed_Mult Scaling factor for setpoint velocity
(parameter 28 from configuration table)
Speed_Div Scaling factor for setpoint velocity
(parameter 30 from configuration table)
Freq_Div Prescaler for maximum velocity
(parameter 4 from configuration table)

4.1.3 Acceleration

Acceleration Factor

$$
a=\text { Acceleration } * \frac{\text { Acc_Multiplier }}{\text { Freq_Prescaler }\left[\frac{\mathrm{Hz}}{\mathrm{~s}}\right]}
$$

a
Acceleration
Acceleration Setpoint acceleration
The permissible acceleration range is $1 \ldots 32767$.
Acceleration is set in $[\mathrm{Hz} / \mathrm{s}]$ when the acceleration factor Acc_Multiplier is selected equal to the prescaler Freq_Prescaler.

Correlation between internal acceleration and specification in the process data

a Acceleration
Acceleration
Acc_Mult
Setpoint acceleration
Scaling factor for setpoint acceleration (parameter 32 from configuration table)
Acc_Div Scaling factor for setpoint acceleration
(parameter 34 from configuration table)
Acc_Fac Factor for maximum acceleration
(parameter 6 from configuration table)
Freq_Div Prescaler for maximum velocity
(parameter 4 from configuration table)
Correlation between the internal acceleration and the mechanical acceleration
$a_{m}=\frac{1}{p} * \frac{a}{256}$
$\mathrm{a}_{\mathrm{m}}\left[1 / \mathrm{s}^{\wedge} 2\right] \quad$ Acceleration at the motor axis in revolutions per second ${ }^{\wedge} 2$
p [1] Number of pole pairs
v [1] Target velocity in process image

4.1.4 Electric Parameters

4.1.4.1 Motor Constant

The motor constant K_{m} can be calculated from the data sheet specifications as follows:
$M_{h}=K_{m} * I_{n}$
$\mathrm{M}_{\mathrm{h}}[\mathrm{N}] \quad$ Holding torque
$\mathrm{K}_{\mathrm{m}} \quad$ Motor constant
I_{n} [A] Motor current vertex
or, alternatively, from the measurement of open-circuit voltage $U_{\text {emf: }}$:
$U_{e m f}=K_{m} * \omega_{m}$
$\mathrm{U}_{\mathrm{emf}} \quad[\mathrm{V}] \quad$ Open-circuit voltage vertex of a motor winding
$\mathrm{K}_{\mathrm{m}} \quad$ Motor constant
$\omega_{\mathrm{m}} \quad[1 / \mathrm{s}] \quad$ Angular frequency, mechanical

4.1.4.2 Supply Voltage

The following formulas describe the correlation between rotational speed, torque and the minimum required supply voltage U_{DC}.

The correlation between the voltage vectors can be depicted by the following vector diagram:

Fig. 4.1.4-1: Vector diagram

Minimum Required Motor Voltage

$U_{D C}=\sqrt{U^{2}{ }_{L}+\left(U_{r}+U_{e m f}\right)^{2}}$
$\mathrm{U}_{\mathrm{DC}} \quad[\mathrm{V}] \quad$ Minimum required motor voltage
$\mathrm{U}_{\mathrm{L}} \quad[\mathrm{V}] \quad$ Voltage via inductance of motor winding
Ur [V] Voltage via ohmic resistance of motor winding
$\mathrm{U}_{\mathrm{emf}} \quad[\mathrm{V}] \quad$ Open-circuit voltage vertex of a motor winding
Voltage via ohmic resistance of motor winding
$U_{r}=I * R$
$\mathrm{U}_{\mathrm{r}} \quad[\mathrm{V}] \quad$ Voltage via ohmic resistance of motor winding
I [A] Motor current vertex
$\mathrm{R} \quad[\mathrm{W}] \quad$ Winding resistance of a motor winding, incl. supply line resistance

Voltage via inductance of motor winding
$U_{L}=I * \omega_{m} * L$

U_{L}	$[\mathrm{V}]$	Voltage via inductance of motor winding
I	$[\mathrm{A}]$	Motor current vertex
ω_{e}	$[1 / \mathrm{s}]$	Angular frequency, electric
L	$[\mathrm{H}]$	Inductance of a motor winding

Open-circuit voltage vertex of a motor winding

$$
U_{e m f}=K_{m} * \omega_{m}
$$

$\mathrm{U}_{\mathrm{emf}} \quad[\mathrm{V}] \quad$ Open-circuit vertex of a motor winding
$\mathrm{K}_{\mathrm{m}} \quad$ Motor constant
$\omega_{\mathrm{m}} \quad[1 / \mathrm{s}] \quad$ Angular frequency, mechanical

4.1.4.3 Current Profile Setting

A lower overcurrent can be supplied by the module for a correspondingly longer time.

The time until deactivation results from the following correlation:
$t_{\text {off }}=\frac{5 A}{I_{\text {OV }}-5 A} * 5 \mathrm{~s}$
$\mathrm{t}_{\text {off }} \quad$ Time until shutdown
$\mathrm{I}_{0 \mathrm{v}} \quad$ Overcurrent
After operation with overcurrent, a phase with reduced current must follow, in order for the module's thermal model to return to its original state. The required cooling time ($\mathrm{t}_{\text {cool }}$) is calculated as follows:
$t_{\text {cool }}=4 * \frac{I_{O V}-5 A}{5 A-I_{r e}} * t_{O V}$
$\mathrm{t}_{\text {cool }} \quad$ Cooling time
$\mathrm{I}_{0 \mathrm{v}} \quad$ Overcurrent
$\mathrm{I}_{\mathrm{re}} \quad$ Reduced current
$\mathrm{t}_{0 \mathrm{~V}}$ Duration

4.1.4.4 Buffer Condenser

$$
C=\frac{2 * W_{\text {mech }}}{U_{\max }^{2}-U_{D C}^{2}}-C_{\text {int }}
$$

$\mathrm{W}_{\text {mech }} \quad$ Mechanical energy fed back in
$\mathrm{U}_{\text {max }} \quad$ Parameter DC_Link_U max
U DC Motor supply
$\mathrm{C}_{\text {int }} \quad 400 \mu \mathrm{~F}$

4.2 Mailbox Commands

4.2.1 Overview of Mailbox Commands

Function	Opcode	Meaning	Page
General commands			
IDLE	0x00	No task	152
Drive commands			
DRIVE_COMMAND	0x40	Command for Move mode	153
Download command			
DLD_START	0x41	Download Start	154
DLD_CONT	0x42	Download Continue	157
DLD_END	0x43	Completion of download	160
Table management commands			
TABLE_ERASE	0x44	Tables will be deleted.	161
TABLE_COPY	0x45	Tables will be copied.	163
TABLE_START	0x46	Table is activated	166
TABLE_STOP	0x48	Ends table processing	167
TABLE_GET_ACTIVE	0x4F	Determine active table	168
Diagnostics commands			
DIAG_RD_ERROR	0x49	Information about error retrieved from error memory	169
DIAG_QUIT_ERROR	0x4A	Terminates a device error condition	170
DIAG_RD_VAR	0x4C	Read out internal variable	171
DIAG_RD_BIT	0x4D	Read out internal bit	172
DIAG_QUERY STORAGE	0x4E	Read out storage process status bit	173
Configuration table commands			
CONFIG_SET_PTR	0x50	Set address for data access to the configuration	174
CONFIG_WR	0x51	Write access to configuration value	175
CONFIG_RD	0x52	Read access to configuration value	176
CONFIG_SAVE	0x53	Saves the current RAM configuration	177
CONFIG_RESTORE	0x54	Restores the configuration	178

Function	Opcode	Meaning	Page
Position table commands			
POS_TABLE_CREATE	$0 \times 5 \mathrm{C}$	Generates a position table in the RAM.	180
POS_TABLE_SET_PTR	$0 \times 5 \mathrm{D}$	Sets an index for the subsequent entry to be written with POS_TABLE_WR in the position table	181
POS_TABLE_WR	$0 \times 5 \mathrm{E}$	Writes an entry to the active position table	182
POS_TABLE_TEACH	$0 \times 5 \mathrm{~F}$	Writes the current position to the active position table	183

4.2.2 Overview of Mailbox Commands, Sorted by Opcodes

Function	Opcode	Meaning	Page
IDLE	0x00	No task	152
DRIVE_COMMAND	0x40	Command for Move mode	153
DLD_START	0x41	Download Start	154
DLD_CONT	0x42	Download Continue	157
DLD_END	0x43	Completion of download ...	160
TABLE_ERASE	0x44	Tables being deleted	161
TABLE_COPY	0x45	Tables being copied ...	163
TABLE_START	0x46	Activates a table	166
TABLE_STOP	0x48	Ends table processing	167
DIAG_RD_ERROR	0x49	Information about error retrieved from error memory	169
DIAG_QUIT_ERROR	0x4A	Terminates a device error condition	170
DIAG_RD_VAR	0x4C	Read out internal variable	171
DIAG_RD_BIT	0x4D	Read out internal bit	172
DIAG_QUERY_ STORAGE	0x4E	Read out storage process status bit	173
TABLE_GET_ACTIVE	0x4F	Determine active table	168
CONFIG_SET_PTR	0x50	Set address for data access to the configuration	174
CONFIG_WR	0x51	Write access to configuration value	175
CONFIG_RD	0x52	Read access to configuration value	176
CONFIG_SAVE	0x53	Saves the current RAM configuration	177
CONFIG_RESTORE	0x54	Restores the configuration	178
POS_TABLE_CREATE	0x5C	Generates a position table in the RAM.	180
POS_TABLE_SET_PTR	0x5D	Sets an index for the subsequent entry to be written with POS_TABLE_WR in the position table	181
POS_TABLE_WR	0x5E	Writes an entry to the active position table	182
POS_TABLE_TEACH	0x5F	Writes the current position to the active position table	183

4.2.3 Overview of Mailbox Commands, Sorted by Functions

Function	Opcode	Meaning	Page
CONFIG_RD	0x52	Read access to configuration value	176
CONFIG_RESTORE	0x54	Restores the configuration	178
CONFIG_SAVE	0x53	Saves the current RAM configuration	177
CONFIG_SET_PTR	0x50	Set address for data access to the configuration	174
CONFIG_WR	0x51	Write access to configuration value	175
DIAG_QUERY_ STORAGE	0x4E	Read out storage process status bit	173
DIAG_QUIT_ERROR	0x4A	Terminates a device error condition	170
DIAG_RD_BIT	0x4D	Read out internal bit	172
DIAG_RD_ERROR	0x49	Information about error retrieved from error memory	169
DIAG_RD_VAR	0x4C	Read out internal variable	171
DLD_CONT	0x42	Download Continue	157
DLD_END	0x43	Completion of download ...	160
DLD_START	0x41	Download Start	154
DRIVE_COMMAND	0x40	Command for Move mode	153
IDLE	0x00	No task	152
POS_TABLE_CREATE	0x5C	Generates a position table in the RAM.	180
POS_TABLE_SET_PTR	0x5D	Sets an index for the subsequent entry to be written with POS_TABLE_WR in the position table	181
POS_TABLE_TEACH	0x5F	Writes the current position to the active position table	183
POS_TABLE_WR	0x5E	Writes an entry to the active position table	182
TABLE_COPY	0x45	Tables being copied ...	163
TABLE_ERASE	0x44	Tables being deleted	161
TABLE_GET_ACTIVE	0x4F	Determine active table	168
TABLE_START	0x46	Activates a table	166
TABLE_STOP	0x48	Ends table processing	167

4.2.4 Reference Commands - Mailbox Commands

4.2.4.1 General commands

4.2.4.1.1 IDLE (0×00)

No task is performed if the value for "Opcode" is 0 .

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	Reserved						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x00							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return	0x00:		OK					
Code	0 x 01 :		General error					

4.2.4.2 Move Commands

4.2.4.2.1 DRIVE_COMMAND (0x40)

The module can be operated via the mailbox using the move commands. Movement can be made directly to different positions. This command is accepted only when the mode "Move task via mailbox"(chapter Fehler! Verweisquelle konnte nicht gefunden werden., „Fehler! Verweisquelle konnte nicht gefunden werden.") has been activated.

The commands available for the Move mode are described in chapter 4.3, "4.3".

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	Command							
MB3	Data 1							
MB4	Data 2							
MB5	Data 3							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	Command							
MB3	Data 1							
MB4	Data 2							
MB5	Data 3							
Return Code	0x00:		OK					
	0x01:		General error					
	0x11:		The last command is still being executed					
	0x12:		Command not accepted, for example, when a Move command has not yet been completed.					
		0x13:	Unknown command					
		0x23:		ess	ied			

4.2.4.3 Download Commands

4.2.4.3.1 DLD_START (0x41)

Download Start

Tables are always loaded into RAM (1 or 2) first. The cursor is first placed on the first entry. Only one table can be loaded at any one time; any previous, incomplete download is canceled and becomes invalid. Direct transfer to / from the EEPROM is not possible (see also TABLE_COPY). Download to the same RAM sector is rejected with an error message when a move program table is still active. Camshaft and position tables can also be overwritten when they are active.

Default assignment

The default assignment for moving curve tables is PROG_END (0×00). Camshaft tables have the default assignment 0x80000000 (invalid position). The default assignment for position tables is 0 .

Configuration tables

The EEPROM version number is expected in byte 5 during download of a configuration table. A complete table, with 128 data values, 32 bit each, is always expected.

Download formats (see also Request Data 4)

Expanded 32-bit down-/upload

A DLD_CONT must be used for an 8-bit command / data sample and for a 32bit data entry / position entry in the table when downloading a Move program / a camshaft table. MB 4... 6 are ignored for an 8-bit command / data sample.

Compressed 24-bit down-/upload

When downloading a Move program / a camshaft table, those items are transferred with a DLD_CONT command for an 8-bit command / data sample and a 24 -bit date entry / position entry.

Maximum number of data sets (see also Request, Byte 5 and 6)

Table	Typ \mathbf{e}	Max. number of data sets
Move program:	1	400
Camshaft	2	50
Position table	3	50
Configuration	4	128
Trace	5	1000

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x41							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Number of data sets							
MB5	EEPROM version number							
Return Code	0x00: OK							
	0x30:		Table being used					
	0×31 :		General error					
Status	0 :		Download/Upload can be started					
	1 :		Error; Download/Upload not possible					

WAGO-I/O-SYSTEM 750
I/O Modules

4.2.4.3.2 DLD_CONT (0x42)

Download Continue

An entry is written to the selected table. The cursor is then moved to the next element. The request data are ignored for an upload. An error is returned when it is detected during a download that a transmitted Move table command is invalid, or if camshaft entries are transmitted NOT in ascending order. The data that has been transmitted will not be corrected. The table can not be valid with DLD_END however.

Download formats:

Expanded 32-bit down-/upload

A DLD_CONT must be used for an 8-bit command / data sample and for a 32bit data entry / position entry in the table when downloading a Move program / a camshaft table. MB $4 \ldots 6$ are ignored for an 8 -bit command / data sample.

Move program table (Type 01)

Step	MB2	MB3	MB4	MB5
1.1	Command 1	Reserved	Reserved	Reserved
1.2	Data 1 (LSB)	Data 1	Data 1	Data 1 (MSB)
2.1	Command 2	Reserved	Reserved	Reserved
2.2	Data 2 (LSB)	Data 2	Data 2	Data 2 (MSB)
\ldots				

Camshaft Table (Type 02)

Step	MB2	MB3	MB4	MB5
1.1	Bit sample 1	Reserved	Reserved	Reserved
1.2	Position 1 (LSB)	Position 1	Position 1	Position 1 (MSB)
2.1	Bit sample 2	Reserved	Reserved	Reserved
2.2	Position 2 (LSB)	Position 2	Position 2	Position 2 (MSB)
\ldots				

Compressed 24-bit down-/upload

When downloading a Move program / a camshaft table, those items are transferred with a DLD_CONT command for an 8-bit command / data sample and a 24-bit date entry / position entry:

Move program table (Type 01)

Step	MB2	MB3	MB4	MB5
1	Command 1	Data 1 (LSB)	Data 1	Data 1 (MSB)
2	Command 2	Data 2 (LSB)	Data 2	Data 2 (MSB)
\ldots				

Camshaft Table (Type 02)

Step	MB2	MB3	MB4	MB5
1	Bit sample 1	Position 1 (LSB)	Position 1	Position 1 (MSB)
2	Bit sample 2	Position 2 (LSB)	Position 2	Position 2 (MSB)
\ldots				

Only 32-bit data exists for the position tables (Type 03) and the configuration data set (Type 04). Therefore, only the 32-bit down-/upload are given for both types of tables.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x42							
MB1	T				-			
MB2	Data							
MB3	Data							
MB4	Data							
MB5	Data							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x42							
MB1	T	Return Code						
MB2	Data							
MB3	Data							
MB4	Data							
MB5	Data							
Return Code	0x00:		OK					
	0x31:		Upload/Download not started, or all data have already been transferred					
	0x38:		Transferred data set corrupt					

4.2.4.3.3 DLD_END (0x43)

End of Download

The download is completed and the stepper module checks the checksum. If the checksum is not OK, the table is invalid and can not be activated. The checksum is the sum of all data transferred with DLD_CONT. Summation is performed at 8 bits, with the 4 bytes that were transferred with DLD_CONT each being taken as 8 -bit values. The difference between the sum of all transferred data and the checksum must therefore be zero. The request data are ignored for an upload. If a configuration table is transferred, saving to EEPROM is performed automatically (but only when saving has been completed successfully), with a subsequent warm start (even if the transfer was faulted) that re-initializes all software modules.
The Reset status bit is set after the warm start; this must be canceled using Reset_Quit.
Only then is the module operational again.
After a successful download of a Move program to RAM Table 1, that table is automatically activated. (only when no other table is active however, see also TABLE_START)

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 3}$							
MB1	T							
MB2	Checksum for transferred data (LSB)							
MB3	Checksum for transferred data							
MB4	Checksum for transferred data							
MB5	Checksum for transferred data (MSB)							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x43							
MB1	T	Return Code						
MB2	Checksum for stored data (LSB)							
MB3	Checksum for stored data							
MB4	Checksum for stored data							
MB5	Checksum for stored data (MSB)							
Return Code	0x00: OK							
	0x31: General							

4.2.4.4 Table Management Commands

4.2.4.4.1 TABLE_ERASE (0x44)

Tables are deleted by setting their status to invalid. An active table can not be deleted. A table can not be deleted during ongoing transfer using DLD_START, DLD_CONT or DLD_END.

Deleting of an EEPROM table is performed in the background, independently of processing of the table command (see also DIAG_QUERY_STORAGE). The "FACTORY_DEFAULT" configuration contained in the EEPROM can not be deleted (not even when using 255 as byte 2). "FACTORY_DEFAULT" may only be overwritten.

Response								
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x44							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0x30:		Table active					
0×31 :			General error					
Status	0 :		Successfully deleted					
	$1:$		Deleting aborted					

R/W Read/Write
ERA Erase
Fig. 4.2.4-1: Table manager
g067120e

WAGO-I/O-SYSTEM 750 I/O Modules

4.2.4.4.2 TABLE_COPY (0×45)

Tables will be copied.
The target may not be identical to the source.
A table can not be specified either as the target nor as the source of the copying command when transfer using DLD_START, DLD_CONT or DLD_END has not been completed. Writing of the EEPROM is performed in the background, independent of processing of the table command (see also DIAG_QUERY_STORAGE).

The tables located in the EEPROM are always copied to RAM 1 when the system is started up. This command can not be used for copying out of the EEPROM.

A configuration table can not be copied with this command (see also CFG_SAVE, CONFIG_RESTORE).

Copying options:

1. RAM \rightarrow RAM
2. RAM \rightarrow EERPOM

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x44							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0×31 :		General error					
	0x33:		Copying process still active					
	0x34:		EEPROM copying process aborted					
	0x35:		Target table not empty					
Status	0 :		Successfully copied					
	1:		Copying aborted					

4.2.4.4.3 TABLE_START (0x46)

Activates a table Only a valid table can be activated (transfer using DLD_START, DLD_CONT and DLD_END completed successfully and checksum valid). This command can only be used after the Move program has been stopped.

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x46							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0x31:			General error				
Status	0 :		Successfully activated					
	1 :		Activation aborted					

4.2.4.4.4 TABLE_STOP (0x48)

Ends table processing; after this, the STOP_FAST command is executed internally in the system.

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 8}$							
MB1	T	Reserved						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.2.4.4.5 TABLE_GET_ACTIVE (0x4F)

Determine the active table.

WAGO-I/O-SYSTEM 750
I/O Modules

4.2.4.5 Diagnostics Commands

4.2.4.5.1 DIAG_RD_ERROR (0x49)

Information about error is retrieved from the error memory.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x49							
MB1	T	-						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

Response								
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x49							
MB1	T	Return Code						
MB2	Error code (LSB)							
MB3	Error code (MSB)							
MB4	Extra information (LSB)							
MB5	Extra information (MSB)							
Return Code	0x00:		OK					

4.2.4.5.2 DIAG_QUIT_ERROR (0x4A)

Terminates a device error condition.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x4A							
MB1	T	-						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x4A							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							

4.2.4.5.3 DIAG_RD_VAR (0x4C)

Read out status variable. The variable number determines the source to be read from.

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x4C							
MB1	T	Return Code						
MB2	Variable (LSB)							
MB3	Variable							
MB4	Variable							
MB5	Variable (MSB)							
Return Code	0x00: OK							

4.2.4.5.4 DIAG_RD_BIT (0x4D)

Read out status bit (see also chapter 4.5, "Bit Field for I/O Driver").

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x4D							
MB1	T	-						
MB2	Bit number							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

Bit number $0 \ldots 255$: Specifies which predefined bit is being requested.

4.2.4.5.5 DIAG_QUERY_STORAGE (0x4E)

Read out storage process status bit

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x4E							
MB1	T	Reserved						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x4E							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00:		OK					
Status	0 :		Storing completed					
	$1 . . .255$		Storing in progress					

4.2.4.6 Configuration Table Commands

4.2.4.6.1 CONFIG_SET_PTR (0×50)

Set address for data access to the configuration, see chapter Fehler! Verweisquelle konnte nicht gefunden werden., "Fehler! Verweisquelle konnte nicht gefunden werden.". The specified address is the same as the byte address.

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x50							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0x23: Access denied; invalid number of by							

4.2.4.6.2 CONFIG_WR (0x51)

Write access to configuration value.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x51							
MB1	T	-						
MB2	Data (LSB)							
MB3	Data							
MB4	Data							
MB5	Data (MSB)							

Response									
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}	
MB0	0x51								
MB1	T	Return Code							
MB2	Reserved								
MB3	Reserved								
MB4	Reserved								
MB5	Reserved								
Return	0×00			OK					
Code				Access denied					

4.2.4.6.3 CONFIG_RD (0x52)

Read access to configuration value. The value 0 is returned when invalid access size specified.

4.2.4.6.4 CONFIG_SAVE (0x53)

Saves the current RAM configuration in the EEPROM. The configuration is saved as a user data set in the EEPROM with password 0x0001. The configuration is saved as RACTORY_DEFAULT in the EEPROM with password 0xE17E. At the same time, EEPROM sectors of the module registry set are also saved. A FACTORY_DEFAULT data set that has been saved can never be deleted again, only overwritten. This function does not wait for the saving process to be completed. This can be determined with DIAG_QUERY_STORAGE. Complete activation of the saved data set is conducted only after a (manual) restart of the module.
The Reset status bit is set after the warm start; this must be canceled using Reset_Quit.
Only then is the module operational again.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x53							
MB1	T				-			
MB2	Password (LSB)							
MB3	Password							
MB4	Password							
MB5	Password (MSB)							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x53							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00:		OK					
	0x31:		Fault					

4.2.4.6.5 CONFIG_RESTORE (0x54)

The configuration is restored and the user data set overwritten. A warm start is carried out after the command has been successfully executed to ensure that all data is accepted.

Warning
During warm start the mailbox data are undefined. They may be evaluated only again if the status bit Reset signals the end of warm start.

WAGO-I/O-SYSTEM 750
I/O Modules

Response								
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x54							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return	$\begin{aligned} & 0 \times 00: \\ & 0 \times 31: \end{aligned}$		OK					
Code			Fault					

4.2.4.7 Position table commands

4.2.4.7.1 POS_TABLE_CREATE (0x5C)

Generates a position table in the RAM. The table status is set to "valid".

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5C							
MB1	T	-						
MB2	Storage location							
MB3	Number of elements							
MB4	Initialization							
MB5	Reserved							
Storage location		0 :		Reserved				
		1 :		RAM Table 1				
		2:		RAM Table 2				
		3 ... 255:		Reserved				
Number of elements		$1 \ldots 50$		Number of elements				
		51... 255:		Reserved				
Initializatio n		0 :		Install table completely with 0×80000000				
		1 :		Expand existing table (all existing entries are retained) Is executed only when the new size is larger than the existing table!				

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5C							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00:		OK					
	0x32:		Invalid table specified					
	0x3A		Invalid number of elements					
Status	0 :		Initialization successful					
	1 :		Initialization aborted					

4.2.4.7.2 POS_TABLE_SET_PTR (0x5D)

Sets an index for the subsequent entry to be written with POS_TABLE_WR in the active position table.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5D							
MB1	T	-						
MB2	Index							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Index	0 ... 49:			Index				
50... 255:				Reserved				

4.2.4.7.3 POS_TABLE_WR (0x5E)

Writes an entry to the active position table. The table index that was last set using POS_TABLE_SET_PTR is always overwritten.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x5E							
MB1	T	Save value (LSB)						
MB2	Save value							
MB3	Save value							
MB4								
MB5								

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5E							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0x37:			Table does not exist, or index not set				
Status	0 :		Writing completed successfully					
	1 :		Writing aborted					

4.2.4.7.4 POS_TABLE_TEACH (0x5F)

Writes the current position to the active position table.

Request								
Byte	2^{7}	2^{6}	2^{5}	24	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5F							
MB1	T	-						
MB2		Target for measured value						
MB3		Measurement						
MB4		Reserved						
MB5		Reserved						
Target for measured value		0 ... 49:		Index at which the current position in the currently active position table is to be filed (see also TABLE_START)				
		-1 (0xFF):		Save current position as negative limit Drive_Range_Neg (see configuration table)				
		-2 (0xFE):		Save current position as positive limit Drive_Range_Pos (see configuration table)				
		-3 (0xFD):		The current position is the zero point for a relevant measurement				
Measureme nt		50 ... 252:		Reserved				
		0:		Absolute measurement: Save current position				
		1:		Relative measurement: Zero point for relative measurement - save current position				
2 ... 255:				Reserved				

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x5F							
MB1	T	Return Code						
MB2	Status							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							
Return Code	0x00: OK							
	0x37:		Table or specified index does not exist					
Status	0 :		Writing completed successfully					
	$1:$		Writing aborted					

WAGO-I/O-SYSTEM 750
I/O Modules

4.3 Commands for Move Mode

4.3.1 Overview of Commands for Move Mode

Function	Opcode	Meaning	Page
Setpoint commands			
MOVE	0x02	Each MOVE command initiates a positioning process.	193
MOVE_IMMEDIATE	0x03	Each MOVE command initiates a positioning process.	194
MOVE_TABLE	0x04	Each MOVE command initiates a positioning process.	195
MOVE_TABLE IMMEDIATE	0x05	Each MOVE command initiates a positioning process.	196
MOVE_REL	0x06	Each MOVE command initiates a positioning process.	197
MOVE_TABLE_REL	0x08	Each MOVE command initiates a positioning process.	198
SPEED	0x10	SPEED commands run the drive to a speed..	199
SPEED_IMMEDIATE	0×11	SPEED commands run the drive to a speed..	200
STOP_FAST	0x18	SPEED commands run the drive to a speed..	201
STOP_NO_RAMP	0x19	SPEED commands run the drive to a speed..	202
TORQ	0x1C	Each TORQ command begins a current setting (applies only to 750-673)	203
TORQ_IMM	0x1D	Each TORQ command begins a current setting (applies only to 750-673)	204
START_REFERENCING	0x20	Starts a reference run.	205
SET_ACC_MODE	0x21	Sets the acceleration and decceleration mode.	207
SET_ACC	0x22	Sets acceleration and/or delay; valid as of the next positioning process.	209
SET_ACC_PARAM_UP	0x23	Set the Acc_ParamUp parameter for acceleration; valid as of the next positioning process.	210
$\begin{aligned} & \text { SET_ACC_PARAM_ } \\ & \text { DOWN } \end{aligned}$	0x24	Set the Acc_ParamDown parameter for delay (deceleration); valid as of the next positioning process.	211
SET_VELOCITY	0x25	Sets the positioning speed; valid as of the next positioning process.	212

Function	Opcode	Meaning	Page
SET_VELOCITY_ TARGET	0x2B	Velocity to target position. Valid only for the next positioning process and is then reset automatically to zero after the next positioning process.	213
SET_ACTUALPOSITON	0x2E	The current position is applied to the transferred value.	214
$\begin{aligned} & \text { SET_ACTUALPOSITION_ } \\ & \text { ZERO } \end{aligned}$	0x2F	The current position is set to zero	215
SET_CURRENT	0x39	Sets the motor current for drive movement.	216
Mathematic commands			
VAR_SET	0x50	Sets one of the variables FILT1 ... FILT8 to the specified value	217
VAR_INC	0x51	Adds the specified value to one of the variables FILT1 ... FILT8.	218
VAR_DEC	0x52	Subtracts the specified value from one of the variables FILT1 ... FILT8.	219
VAR_ADD	0x53	Adds two variables and writes the result to a third variable	220
VAR_SUB	0x54	Subtracts two variables and writes the results to a third variable	221
VAR_MUL	0x55	Multiplies one variable by another one and writes the results to a third variable	222
VAR_COPY	0x56	Copes one variable to another variable.	223
VAR_DIV	0x57	Divides one variable by another one and writes the results to a third variable.	224
WAIT_TIME	0x70	Waits a defined time period before processing the next command.	225
WAIT_TEST_BIT	0x71	Before processing the next command waits until the specified bit has the status 0 or 1 .	226
Auxiliary commands			
WR_BIT	0x78	Sets a bit to 0 or 1 .	227
NOP	0xF0	No function	228
PROG_STOP	0xF1	Ends table processing.	229
PROG_END	$\begin{aligned} & 0 \times 00 \text { or } \\ & 0 \times F F \end{aligned}$	End of table.	230
GOTO	0xF5	Continues table process at the addressed entry.	231
GOTO_IF	0xF6	If a bit has been set, table processing is continued at the addressed entry; otherwise from the next entry.	232

WAGO-I/O-SYSTEM 750
I/O Modules

Function	Opcode	Meaning	Page
GOTO_IF_NOT	$0 x F 7$	If a bit has been deleted, table processing is continued at the addressed entry; otherwise from the next entry.	233
GOTO_LABEL	$0 x F 8$	Continues table process from a defined label.	234
GOTO_LABEL_IF	$0 x F 9$	Continues table processing for a defined label if a bit has been set.	235
GOTO_LABEL_IF_NOT	0xFA	Continues table processing for a defined label if a bit has been deleted.	236
LABEL	0xFB	Defines a label for a step target	237

4.3.2 Overview of Move Mode Commands, Sorted by Opcodes

Function	Opcode	Meaning	Page
PROG_END	$\begin{aligned} & 0 \times 00 \text { or } \\ & 0 \times F F \end{aligned}$	End of table.	230
MOVE	0x02	Each MOVE command initiates a positioning process.	193
MOVE_IMMEDIATE	0x03	Each MOVE command initiates a positioning process.	194
MOVE_TABLE	0x04	Each MOVE command initiates a positioning process.	195
MOVE_TABLE IMMEDIATE	0x05	Each MOVE command initiates a positioning process.	196
MOVE_REL	0x06	Each MOVE command initiates a positioning process.	197
MOVE_TABLE_REL	0x08	Each MOVE command initiates a positioning process.	198
SPEED	0x10	SPEED commands run the drive to a speed..	199
SPEED_IMMEDIATE	0 x 11	SPEED commands run the drive to a speed..	200
STOP_FAST	0x18	SPEED commands run the drive to a speed..	201
STOP_NO_RAMP	0x19	SPEED commands run the drive to a speed..	202
TORQ	0x1C	Each TORQ command begins a current setting (applies only to 750-673)	203
TORQ_IMM	0x1D	Each TORQ command begins a current setting (applies only to 750-673)	204
START_REFERENCING	0x20	Starts a reference run.	205
SET_ACC_MODE	0x21	Sets the acceleration and decceleration mode.	207
SET_ACC	0x22	Sets acceleration and/or delay; valid as of the next positioning process.	209
SET_ACC_PARAM_UP	0x23	Set the Acc_ParamUp parameter for acceleration; valid as of the next positioning process.	210
SET_ACC_PARAM_ DOWN	0x24	Set the Acc_ParamDown parameter for delay (deceleration); valid as of the next positioning process.	211
SET_VELOCITY	0x25	Sets the positioning speed; valid as of the next positioning process.	212
SET_VELOCITY_ TARGET	0x2B	Velocity to target position. Valid only for the next positioning process and is then reset automatically to zero after the next positioning process.	213

WAGO-I/O-SYSTEM 750
I/O Modules

Function	Opcode	Meaning	Page
SET_ACTUALPOSITON	0x2E	The current position is applied to the transferred value.	214
SET_ACTUALPOSITION ZERO	0x2F	The current position is set to zero	215
SET_CURRENT	0x39	Sets the motor current for drive movement.	216
VAR_SET	0x50	Sets one of the variables FILT1 ... FILT8 to the specified value	217
VAR_INC	0x51	Adds the specified value to one of the variables FILT1 ... FILT8.	218
VAR_DEC	0x52	Subtracts the specified value from one of the variables FILT1 ... FILT8.	219
VAR_ADD	0x53	Adds two variables and writes the result to a third variable	220
VAR_SUB	0x54	Subtracts two variables and writes the results to a third variable.	221
VAR_MUL	0x55	Multiplies one variable by another one and writes the results to a third variable.	222
VAR_COPY	0x56	Copes one variable to another variable.	223
VAR_DIV	0x57	Divides one variable by another one and writes the results to a third variable.	224
WAIT_TIME	0x70	Waits a defined time period before processing the next command.	225
WAIT_TEST_BIT	0x71	Before processing the next command waits until the specified bit has the status 0 or 1 .	226
WR_BIT	0x78	Sets a bit to 0 or 1 .	227
NOP	0xF0	No function	228
PROG_STOP	0xF1	Ends table processing.	229
GOTO	0xF5	Continues table process at the addressed entry.	231
GOTO_IF	0xF6	If a bit has been set, table processing is continued at the addressed entry; otherwise from the next entry.	232
GOTO_IF_NOT	0xF7	If a bit has been deleted, table processing is continued at the addressed entry; otherwise from the next entry.	233
GOTO_LABEL	0xF8	Continues table process from a defined label.	234
GOTO_LABEL_IF	0xF9	Continues table processing for a defined label if a bit has been set.	235
GOTO_LABEL_IF_NOT	0xFA	Continues table processing for a defined label if a bit has been deleted.	236
LABEL	0xFB	Defines a label for a step target	237

4.3.3 Overview of Move Mode Commands, Sorted by Function

Function	Opcode	Meaning	Page
GOTO	0xF5	Continues table process at the addressed entry.	231
GOTO_IF	0xF6	If a bit has been set, table processing is continued at the addressed entry; otherwise from the next entry.	232
GOTO_IF_NOT	0xF7	If a bit has been deleted, table processing is continued at the addressed entry; otherwise from the next entry.	233
GOTO_LABEL	0xF8	Continues table process from a defined label.	234
GOTO_LABEL_IF	0xF9	Continues table processing for a defined label if a bit has been set.	235
GOTO_LABEL_IF_NOT	0xFA	Continues table processing for a defined label if a bit has been deleted.	236
LABEL	0xFB	Defines a label for a step target	237
MOVE	0x02	Each MOVE command initiates a positioning process.	193
MOVE_IMMEDIATE	0x03	Each MOVE command initiates a positioning process.	194
MOVE_REL	0x06	Each MOVE command initiates a positioning process.	197
MOVE_TABLE	0x04	Each MOVE command initiates a positioning process.	195
MOVE_TABLE_ IMMEDIATE	0x05	Each MOVE command initiates a positioning process.	196
MOVE_TABLE_REL	0x08	Each MOVE command initiates a positioning process.	198
NOP	0xF0	No function	228
PROG_END	0x00 or $0 x F F$	End of table.	230
PROG_STOP	0xF1	Ends table processing.	229
SET_ACC	0x22	Sets acceleration and/or delay; valid as of the next positioning process.	209
SET_ACC_MODE	0x21	Sets the acceleration and decceleration mode.	207
SET_ACC_PARAM_ DOWN	0x24	Set the Acc_ParamDown parameter for delay (deceleration); valid as of the next positioning process.	211
SET_ACC_PARAM_UP	0x23	Set the Acc_ParamUp parameter for acceleration; valid as of the next positioning process.	210

WAGO-I/O-SYSTEM 750
I/O Modules

Function	Opcode	Meaning	Page
SET_ACTUALPOSITION ZERO	0x2F	The current position is set to zero	215
SET_ACTUALPOSITON	0x2E	The current position is applied to the transferred value.	214
SET_CURRENT	0x39	Sets the motor current for drive movement.	216
SET_VELOCITY	0x25	Sets the positioning speed; valid as of the next positioning process.	212
SET_VELOCITY_ TARGET	0x2B	Velocity to target position. Valid only for the next positioning process and is then reset automatically to zero after the next positioning process.	213
SPEED	0x10	SPEED commands run the drive to a speed..	199
SPEED_IMMEDIATE	0x11	SPEED commands run the drive to a speed..	200
START_REFERENCING	0x20	Starts a reference run.	205
STOP_FAST	0x18	SPEED commands run the drive to a speed..	201
STOP_NO_RAMP	0x19	SPEED commands run the drive to a speed..	202
TORQ	0x1C	Each TORQ command begins a current setting (applies only to 750-673)	203
TORQ_IMM	0x1D	Each TORQ command begins a current setting (applies only to 750-673)	204
VAR_ADD	0x53	adds two variables and writes the result to a third variable	220
VAR_COPY	0x56	Copes one variable to another variable.	223
VAR_DEC	0x52	Subtracts the specified value from one of the variables FILT1 ... FILT8.	219
VAR_DIV	0x57	Divides one variable by another one and writes the results to a third variable.	224
VAR_INC	0x51	Adds the specified value to one of the variables FILT1 ... FILT8.	218
VAR_MUL	0x55	Multiplies one variable by another one and writes the results to a third variable.	222
VAR_SET	0x50	Sets one of the variables FILT1 ... FILT8 to the specified value	217
VAR_SUB	0x54	Subtracts two variables and writes the results to a third variable.	221
WAIT_TEST_BIT	0x71	Before processing the next command waits until the specified bit has the status 0 or 1 .	226

Function	Opcode	Meaning	Page
WAIT_TIME	0×70	Waits a defined time period before processing the next command.	225
WR_BIT	0×78	Sets a bit to 0 or 1.	227

4.3.4 Reference Commands for Move Mode

4.3.4.1 Set point commands

4.3.4.1.1 MOVE (0x02)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command is accepted only when the last positioning process has been completed and the "On_Target" bit has been set. The acceleration and velocity specified by SET_ACC (0x22) and SET_VELOCITY (0x25) are used for positioning commands.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x02							
MB3	Position (LSB)							
MB4	Position							
MB5	Position (MSB)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	Return Code						
MB2	0x02							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.2 MOVE_IMMEDIATE (0x03)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command will interrupt any positioning process that may already be in progress and immediately starts a new positioning process. The acceleration and velocity specified by SET_ACC (0x22) and SET_VELOCITY (0x25) are used for positioning commands.

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T							
MB2	Position (LSB)							
MB3	Position							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	0x03						
MB2	Reserved							
MB3	Reserved							
MB4								
MB5								

4.3.4.1.3 MOVE_TABLE (0x04)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command is accepted only when the last positioning process has been completed and the "On_Target" bit has been set. This command reads the target position from the specified location in a separate position table. The acceleration and velocity specified by SET_ACC (0×22) and SET_VELOCITY (0×25) are used for positioning commands.

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.4 MOVE_TABLE_IMMEDIATE (0x05)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command will interrupt any positioning process that may already be in progress and immediately starts a new positioning process. This command reads the target position from the specified location in a separate position table. The acceleration and velocity specified by SET_ACC (0×22) and SET_VELOCITY (0x25) are used for positioning commands.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x05							
MB3	No. of table entry with target position							
MB4	Reserved							SRC
MB5	Reserved							

SRC 0: Read out from position table.
1: Read out from variables FILT1 ... FILT8.

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0x05							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.1.5 MOVE_REL (0x06)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command is accepted only when the last positioning process has been completed and the "On_Target" bit has been set. This command calculates the target position relative to the last accepted target (if available), or to the current position. The acceleration and velocity specified by SET_ACC (0x22) and SET_VELOCITY (0×25) are used for positioning commands.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x06							
MB3	Position (LSB)							
MB4	Position							
MB5	Position (MSB)							

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.6 MOVE_TABLE_REL (0x08)

Starts a positioning process. This command immediately deletes the "On_Target" bit and sets that bit when the target position is reached. This command is accepted only when the last positioning process has been completed and the "On_Target" bit has been set. This command reads the target position from the specified location in a separate position table. This command calculates the target position relative to the last accepted target (if available), or to the current position. The acceleration and velocity specified by SET_ACC (0x22) and SET_VELOCITY (0x25) are used for positioning commands.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x08							
MB3	No. of table entry with target position							
MB4	Reserved							SRC
MB5	Reserved							

SRC 0: Read out from position table.
1: Read out from variables FILT1 ... FILT8.

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	0x08						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.7 SPEED (0×10)

Runs the drive up to a defined speed. On execution of this command, the "On_Target" bit is deleted immediately and then set when the target speed is reached. This command does NOT set the positioning speed! SET_VELOCITY (0×25) must be used for that. The SPEED command is accepted only when the last process has been completed and the "On_Target" bit has been set.

Velocity range: -25000 ... 25000.

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T							
MB2	Velocity (LSB)							
MB3	Velocity (MSB)							
MB4	Reserved							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	Return Code						
MB2	$\mathbf{0 x 1 0}$							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.1.8 SPEED_IMMEDIATE (0x11)

Runs the drive up to a defined speed. On execution of this command, the "On_Target" bit is deleted immediately and then set when the target speed is reached. This command does NOT set the positioning speed! SET_VELOCITY (0×25) must be used for that. This command will interrupt any process that may already be in operation and immediately starts speed control.

Velocity range: -25000 ... 25000.

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T							
MB2	Velocity (LSB)							
MB3								
MB4	Relocity (MSB)							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	$\mathbf{y y y y y}$						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.9 STOP_FAST (0x18)

Brakes the drive directly with the acceleration command SET_ACC_STOP down to standstill. The internal processing has been designed for this command to be processed in priority. Especially in mailbox mode, every other command is cancelled immediately. This command is also initiated internally when a stop condition is present, such as limit switch or stop input.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x18							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	$\mathbf{0 x 1 8}$						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.10 STOP_NO_RAMP (0x19)

Sets the output frequency immediately to zero. The internal processing has been designed for this command to be processed in priority. Especially in mailbox mode, every other command is cancelled immediately. This command has priority over STOP_FAST. This command is also triggered internally, if release is not set.

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0								
MB1	T	0x19						
MB2	Reserved							
MB3	Reserved							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x19						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.11 TORQ (0x1C)

This function exists at servo stepper controller 750-673.
Begins a current setting. The speed regulator is given a target velocity. As long as the target velocity is not achieved, the current setpoint generates a torque whose sign depends on the speed error.
If the target velocity is achieved, the speed regulator will automatically reduce the current. Because the current is regulated immediately, the bit "On_Target" is set immediately.
This command is accepted only when the last positioning process has been completed and the "On_Target" bit has been set.

Velocity range: -25000 ... 25000.

Request								
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x1C							
MB3	Velocity (LSB)							
MB4	Velocity (MSB)							
MB5	Current setting (0... 150 \%)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	$\mathbf{0 x 1 C}$							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.1.12 TORQ_IMM (0x1D)

This function exists at servo stepper controller 750-673.
Begins a current setting. The speed regulator is given a target velocity. As long as the target velocity is not achieved, the current setpoint generates a torque whose sign depends on the speed error.
If the target velocity is achieved, the speed regulator will automatically reduce the current. Because the current is regulated immediately, the bit "On_Target" is set immediately. This command will interrupt any positioning process that may already be in progress and immediately begins a new current setting.

Velocity range: -25000 ... 25000.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x1D							
MB3	Velocity (LSB)							
MB4	Velocity (MSB)							
MB5	Current setting (0 .. 150%)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	0x1D						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.13 START_REFERENCING (0×20)

This function exists at servo stepper controller 750-673.
Starts a reference run. This command immediately deletes the bits On_Target and Reference_OK. When the reference point is reached, Reference_OK is set. The On_Target bit is not set. The Busy bit is set during a reference run.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x20							
MB3	Reserved							
MB4	Reserved		EMS	EMF	EMR		BAM	
MB5	Reserved					DIR	STD	SWT
BAM	Selection motor alignment							
	0 : Normal reference run							
	1: Reserved							
	10: Motor alignment followed of reference run							
	11: Only motor alignment							
EMR	If Bit $0 \ldots 1$ not 0 , then Bit $2 \ldots 7$ configured the motor alignment							
	0: Motor alignment; the motor moves up to ± 1 full step							
	1: Motor alignment based on stored measured value and Z-impuls. In addition the motor makes a movement up to $\pm 360^{\circ}$.							
	10: Reserved							
	11: Reserved							
EMF	0: Automatic: Motor alignment only if yet does not take place.							
	1: Motor alignment always.							
EMS			The measured value is not stored after an motor alignment (normal operation).					
	$\text { 1: } \quad \begin{aligned} & \mathrm{Tl} \\ & \mathrm{ta} \end{aligned}$		The measured value is stored after an motor alignment (should take place only during start-up).					

SWT	$0: \quad$ Reference run to reference switch:
	1: \quad Reference run to limit switch:
STD	If SWT $=0$, then STD indicates the starting direction, if $S W T$ STD specifies the limit switch.

0 : Starting direction negative / negative limit switch:
1: Starting direction positive / positive limit switch:
DIR DIR is evaluated only when $\operatorname{SWT}=1$.
0 : Reference run started from negative end.
1: Reference run started from positive end.

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	$\mathbf{0 x 2 0}$						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.14 SET_ACC_MODE (0x21)

Sets acceleration and delay type, valid from next positioning process

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0x21							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.1.15 SET_ACC (0×22)

Sets the type and rate of acceleration; valid as of the next positioning process (see also positioning commands MOVE..., $0 \times 02,0 \times 03,0 \times 04,0 \times 05,0 \times 06$, 0x08)

Acceleration range: 1 ... 32767.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x22							
MB3	Acceleration (LSB)							
MB4	Acceleration (MSB)							
MB5	Reserved						SEL	

SEL 0: Sets the value for acceleration and brake phase.
1: Sets the value for acceleration phase only.
2: Sets the value for brake phase only.
3: Sets the value for acceleration and brake phase.

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	0x22						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.16 SET_ACC_PARAM_UP (0x23)

Set the Acc_ParamUp parameter for acceleration; valid as of the next positioning process.

The function for the acceleration parameter as a function of the set acceleration modification is shown in the following table.

Acceleration modification (SET_ACC_MODE \rightarrow ACC_M)	Acceleration parameter Acc_ParamUp
none	Time constant for acceleration increase with linear or $\sin ^{2}{ }^{2}$ t acceleration
constant acceleration period	Acceleration time
constant acceleration path	Acceleration path

Acceleration parameter range: 1-16777215.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x23							
MB3	Acceleration parameter (LSB)							
MB4	Acceleration parameter							
MB5	Acceleration parameter (MSB)							

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x23						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.17 SET_ACC_PARAM_DOWN (0x24)

Set the Acc_ParamDown parameter for delay (deceleration); valid as of the next positioning process.

The function for the delay parameter as a function of the set delay modification is shown in the following table.

Deceleration modification (SET_ACC_MODE \rightarrow DEC_M)	Delay parameter Acc_ParamDown
none	Time constant for decceleration increase with linear or $\sin ^{2} *$ t deceleration
constant delay period	Delay time
constant delay path	Delay path

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T							
MB2	$\mathbf{0 x}$							
MB3	Decceleration parameter (LSB)							
MB4	Decceleration parameter							
MB5	Decceleration parameter (MSB)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	Return Code						
MB2	$\mathbf{0 x 2 4}$							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.1.18 SET_VELOCITY (0x25)

Sets the positioning velocity; valid as of the next positioning command (see also positioning commands MOVE..., 0x02, 0x03, 0x04, 0x05, 0x06, 0x08)

Velocity range: 1 .. 25000.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	Velocity (LSB)						
MB2	Velocity (MSB)							
MB3	Reserved							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	0x25						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.19 SET_VELOCITY_TARGET (0x2B)

Sets the target velocity for the next positioning process. The target velocity is automatically reset to zero after the next positioning process.

Velocity range: 1 .. 25000.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	Velocity (LSB)						
MB2	Velocity (MSB)							
MB3	Reserved							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	$\mathbf{0 x 2 B}$							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.20 SET_ACTUALPOSITON (0x2E)

The current position is set to the transferred value. For this, the logical point Zero is modified accordingly.

The position is given as a 24 -bit value, including sign.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	Position (LSB)						
MB2	Position							
MB3								
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	0x2E							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.21 SET_ACTUALPOSITION_ZERO (0x2F)

Sets the position of the logical zero point to the current position.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T				-			
MB2	0x2F							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x2F						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.1.22 SET_CURRENT (0x39)

Sets the motor current for drive movement.
The corresponding bit in the valid range must be set to 1 for the working range for which the motor current is to be set. Several bits may be set simultaneously. If the corresponding bit is set to 0 , the value for the motor current valid up to then is retained for this range.

Motor current range: $0 \ldots 150 \%$ module rated current

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2
MB0	0x40							
MB1	T	-						
MB2	0x39							
MB3	Motor current							
MB4	Reserved				Scope of Validity			
MB5	Reserved							
Valid range		Bit 0:		Set motor current for standstill				
		it 1:		Set motor current for acceleration				
		it 2:		Set motor current for drive movement				
				Set motor current for deceleration				

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	$\mathbf{0 x 3 9}$							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.2 Mathmatic Commands

4.3.4.2.1 VAR_SET (0×50)

Sets a variable to the defined value.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x50							
MB3	$1 \ldots 8$ (corresponds to FILT1 ... FILT8)							
MB4	16 bit value (LSB)							
MB5	16 bit value (MSB)							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0x50							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.2.2 VAR_INC (0x51)

Adds the given value to a variable.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x51							
MB3	$1 \ldots 8$ (corresponds to FILT1 ... FILT8)							
MB4	16 bit value (LSB)							
MB5	16 bit value (MSB)							

Response												
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$				
0x40												
MB0	MB1						T	0x51				
MB2	Reserved											
MB3	Reserved											
MB4	Reserved											
MB5												

4.3.4.2.3 VAR_DEC (0x52)

Subtracts the given value from a variable.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x52							
MB3	$1 \ldots 8$ (corresponds to FILT1 ... FILT8)							
MB4	16 bit value (LSB)							
MB5	16 bit value (MSB)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x52						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.2.4 VAR_ADD (0x53)

Adds two variables and writes the results to a third variable.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	$\mathbf{0 x 5 3}$						
MB2								
MB3	Result $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8 $)$							
MB4	Summand $2(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							
MB5	Summand $1(1 \ldots 8$ corresponds to FILT1 \ldots FILT8 $)$							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T							
MB2	0x53							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.2.5 VAR_SUB (0×54)

Subtracts one variable from another one and writes the results to a third variable.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 \times 4 0}$							
MB1	T	$\mathbf{0 x 5 4}$						
MB2								
MB3	Difference $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							
MB4	Minuend $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							
MB5	Subtrahend $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0x54							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.2.6 VAR_MUL (0x55)

Multiplies one variable by another one and writes the results to a third variable.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x55							
MB3	Product ($1 . .8$ corresponds to FILT1 ... FILT8)							
MB4	Multiplicand 2 ($1 \ldots 8$ corresponds to FILT1 ... FILT8)							
MB5	Multiplicand 1 ($1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.2.7 VAR_COPY (0x56)

Copes one variable to another variable.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x56							
MB3	Target ($1 . .8$ corresponds to FILT1 ... FILT8)							
MB4	Source ($1 . .8$ corresponds to FILT1 ... FILT8)							
MB5	Reserved							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x56						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.2.8 VAR_DIV (0x57)

Divides one variable by another one and writes the results to a third variable.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	$\mathbf{0 x 5 7}$						
MB2								
MB3	Quotient $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							
MB4	Dividend $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							
MB5	Divisor $(1 \ldots 8$ corresponds to FILT1 \ldots FILT8)							

Response								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T	Return Code						
MB2	0x57							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.3 Wait Commands

4.3.4.3.1 WAIT_TIME (0×70)

Waits for some time before processing the next command
Waiting time range: $0 \ldots 16777215 \mathrm{~ms}$.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x70							
MB3	Waiting time (LSB)							
MB4	Waiting time							
MB5	Waiting time (MSB)							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	0x70						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.3.2 WAIT_TEST_BIT (0x71)

Before processing the next command waits until the specified bit has the specified status 0 or 1 .
Refer to chapter 4.5, "Bit Field for I/O Driver" for the bit number.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0								
MB1	T	0x71						
MB2	Bit No.							
MB3	Specified status of bit (0 or 1)							
MB4	Reserved							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	0x71						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4 Auxiliary commands

4.3.4.4.1 WR_BIT (0x78)

Sets bit to 0 or 1 .
Refer to chapter 4.5, „Bit Field for I/O Driver" for the bit number.

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0x78							
MB3	Bit No.							
MB4	Specified status of bit (0 or 1)							
MB5	Reserved							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0x78						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.2 NOP (0xFO)

Function not defined.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0								
MB1	T							
MB2	0xF0							
MB3	Reserved							
MB4	Reserved							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB2	T	0xF0						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.3 PROG_STOP (0xF1)

Ends the table processing. Sets speed to Zero, deactivates final step, ends table processing.

Request								
Byte	2^{7}	2^{6}	2^{5}	$2{ }^{4}$	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0xF1							
MB3	Error message							
MB4	Reserved							
MB5	Reserved							
Error message		0 :	No error message					
		1 ... 8:	Error message ERROR_TBL_PROGRAM_STOP1 ... 8					
		9 ... 255	Reserved					

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	$\mathbf{0 x F 1}$							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.4 PROG_END (0×00 or $0 x F F$)

End of table (default command for a blank / deleted table). Sets speed to Zero, deactivates the final step, ends table processing and indicates an error ERR_PROG_END.

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0								
MB1	T	0x00 or 0xFF						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	Return Code							
MB1	T	$\mathbf{0 x 0 0}$ or 0xFF						
MB2	Reserved							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.5 GOTO (0xF5)

Continues table processing at the addressed entry.
Command number range: $1 \ldots 500$

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB1								
MB1	T	0xF5						
MB2	Number of next command (LSB)							
MB3	Reserved							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	0xF5							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.6 GOTO_IF (0xF6)

If a bit has been set, table processing is continued at the addressed entry; otherwise the next table entry is used.

Command number range: $1 \ldots 500$

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	$\mathbf{0 x F 6}$						
MB2	Number of next command (LSB)							
MB3	Number of next command (MSB)							
MB4	Number of bit to be checked							
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB0	Return Code							
MB1	T	0xF6						
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.7 GOTO_IF_NOT (0xF7)

If a bit has not been set, table processing is continued at the addressed entry; otherwise the next table entry is used.

Command number range: $1 \ldots 500$

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	$\mathbf{0 x F 7}$						
MB2	Number of next command (LSB)							
MB3	Number of next command (MSB)							
MB4								
MB5								

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0xF7							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.4.8 GOTO_LABEL (0xF8)

Continues table processing at the addressed entry.
Label number range: 1 ... 65536

Request								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
0x40								
MB1	T	0xF8						
MB2	Label number (LSB)							
MB3	Reserved							
MB4								
MB5								

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	Return Code						
MB2	0xF8							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.9 GOTO_LABEL_IF (0xF9)

If a bit has been set, table processing is continued at the addressed entry; otherwise the next table entry is used.

Label number range: $1 \ldots 65536$

Request								
Byte	$\mathbf{2}^{7}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	$\mathbf{0 x 4 0}$							
MB1	T	0xF9						
MB2	Label number (LSB)							
MB3	Number of bit to be checked							
MB4								
MB5								

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0xF9							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.3.4.4.10 GOTO_LABEL_IF_NOT (0xFA)

If a bit has not been set, table processing is continued at the addressed entry; otherwise the next table entry is used.

Label number range: $1 \ldots 65536$

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0xFA							
MB3	Label number (LSB)							
MB4	Label number (MSB)							
MB5	Number of bit to be checked							

Response								
Byte	$\mathbf{2}^{\mathbf{7}}$	$\mathbf{2}^{\mathbf{6}}$	$\mathbf{2}^{\mathbf{5}}$	$\mathbf{2}^{\mathbf{4}}$	$\mathbf{2}^{\mathbf{3}}$	$\mathbf{2}^{\mathbf{2}}$	$\mathbf{2}^{\mathbf{1}}$	$\mathbf{2}^{\mathbf{0}}$
MB0	0x40							
MB1	T	Return Code						
MB2	ResFA							
MB3	Reserved							
MB4	Reserved							
MB5								

4.3.4.4.11 LABEL (0xFB)

Defines a label as a step target for a GOTO command; no further function. If more than one identical label numbers are defined, the one at the lowest address in the table shall be valid.

Label number range: $1 \ldots 65536$

Request								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	-						
MB2	0xFB							
MB3	Label number (LSB)							
MB4	Label number (MSB)							
MB5	Reserved							

Response								
Byte	2^{7}	2^{6}	2^{5}	2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
MB0	0x40							
MB1	T	Return Code						
MB2	0xFB							
MB3	Reserved							
MB4	Reserved							
MB5	Reserved							

4.4 Error Blink Codes

The errors and warnings of all subsystems are analyzed at a central location. The occurrence of errors and warnings is recorded and leads the device into an error condition.

In the case of error messages, the output stage is terminated immediately. The motor has no torque in this state and is at risk of uncontrolled movements, which can be prevented with an external brake.

The error or warning condition continues until the cause is remedied.

Attention

The bit error (S2.7) follows statically the bit Error_Quit (C2.7). If the error cause is not eliminated, the bit Error_Quit is set again!

If no more errors or warnings are reported by the hardware, the error or warning condition can be acknowledged with the positive edge by the control bit Error_Quit or with a mailbox command DIAG_QUIT_ERROR.

The error message consists of a 4-digit number.

4.4.1 Error Codes 1111 through 1999

Error codes 1111 through 1999 are errors which can be confirmed by a simple acknowledgement.

4.4.2 Error Codes 2111 through 2999

Error codes 2111 through 2999 are errors which require a warm start of the module. This causes unsaved settings to be lost, requiring them to be reconfigured by the controller. This is indicated by the Reset status bit.

4.4.3 Error Codes 3111 through 3999

Error codes 3111 through 3999 are serious system errors which, for safety reasons, do not allow further operation of the module.
When such an error is reported, all further program processing is blocked and is branched to a routine, in which the error code is reported exclusively with LED A.
These errors require a reset of the module by switching it off and then switching it back on.
An error is indicated by the Error status bit.

4.4.4 Warning Codes 5111 through 5999

Warning codes 5111 through 5999 do not lead to an error condition--they are merely signaled.
A warning is indicated by the Warning status bit.

4.4.5 Signaling

The error display starts with the first blinking sequence (approx. 10 Hz). Shortly afterward, the second blinking sequence starts (approx. 2 Hz). This sequence represents the highest digit for the 4-place error code.
After a 1 second pause each, all other numbers appear down to the number with the lowest value.
Then, the flash sequence repeats.

4.4.6 Internal Data Bus Parameterization: Accumulative Diagnostics

Errors can also be reported in status byte S0, bit 6 (ERR) and thus initiate an acyclic diagnostics message.
This bit is addressed continuously as long as the error is present and Error_Quit is not set permanently.
Enabling for the indication is set using the configuration parameter ErrorNotificationMode.SystemFlagEnable (parameter 113, bit 0). This bit has the following meaning:

0: \quad Errors are not reported via status byte S0, bit 6 (ERR).
1: \quad Errors are reported via status byte S0, bit 6 (ERR).
Warning displays are enabled using the configuration parameter WarningNotificationMode.SystemFlagEnable (parameter 116, bit 0). This bit has the following meaning:

0: Warnings are not reported via status byte S0, bit 6 (ERR).
1: Warnings are reported via status byte S 0 , bit 6 (ERR).
An explanation of the individual error numbers is given in the following table.

4.4.7 Overview of Error Blink Codes

Error No.:	Designation	Description	Possible cause/Solution
1111	CI UNKNOWN COMMAND	internal	Internal
1112	CI UNKNOWN COMMAND2	Unknown command	A drive command was received with an unknown command. Check command (and possibly the run program).
1113	CI_ERR1	Unknown command, like Error 1112	Same as for Error 1112.
1114	CI_NOT IMPLEMENTED	Command not implemented	Command has been prepared but has not (yet) been implemented, otherwise same as Error 1112.
1115	CI_COMMAND_DE NIED	Command could not be executed	It was not possible to execute a command, as the marginal conditions do not permit it. (incorrect mode, incorrect parameter, for this command)
1116	CI_SPEED1	Configuration: maximum frequency invalid	Unacceptable value specified for maximum frequency.
1117	CI_SPEED2	Frequency setting invalid	Unacceptable value specified for set frequency.
1118	CI_SPEED3	internal	Internal
1121	CI_ACC1	Acceleration value invalid	Check the specified acceleration value (configuration, Move program, process data).
1122	CI_ACC2	Acceleration value invalid	Same as for Error 1121.
1123	CI ROTARY_AXIS PERIOD_SETPOINT	Operation with round axis: absolute position set point value exceeds the round axis range	During operation with the rotary shaft, the absolute position must lie within the range of $0 \ldots$ RotaryShaftRange. Check the position data and parameters for the rotary shaft.
1124	CI_POS_TABLE	Invalid table selected for positioning on positioning table	Check Parameter 2 for a command "MOVE_L".

WAGO-IIO-SYSTEM 750 I/O Modules

Error No.:	Designation	Description	Possible cause/Solution
1125	CI_SET_POS	Actual value can not be set (e.g. while positioning task in progress)	The drive must be motionless for one SET_POS command.
1141	CM_UNKNOWN_C MDSOURCE	internal	internal
1142	CM_AUTOSTART_N OT_POSSIBLE	Autostart of a Move program not possible (not available)	Load the Move program to the module, or de-activate the autostart.
1161	CONFIG_WRITE_ SIZE	Illegal variable when writing the configuration	An attempt was made to enter an element into the configuration with a length less than 1 byte or greater than 4 bytes.
1162	CONFIG_WRONGPA SSWORD	Password not accepted	Specify a correct password
1211	CTRLOUT_FREF	Configuration: maximum frequency invalid	The maximum frequency must be between 1..... 25000 .
1212	CTRLOUT_F_FREF	Maximum frequency reached	An attempt was made to specify a frequency that is greater than the maximum frequency. Check the specified target frequency and the maximum frequency values.
1213	CTRLOUT_CURREN T_SCALE	Configuration: nominal current invalid	Incorrect rated motor current specified. Check the configuration.
1214	CTRLOUT_OPERAT ION_MODE	Configuration: The selected application is not present in this module	Check the configuration value for Mode 1.
1215	CTRLOUTP_CURR_ PARAM	Configuration: current controller password does not agree with current controller parameters	Configuration: Check the parameters for current regulation with the password for current regulation.
1216	CTRLOUTP_F_DIV	Configuration: frequency prescaler faulty	Configuration: Check parameters for frequency prescaler.
1217	CTRLOUT CURREN T_FACTOR	Current setting incorrect (greater than 150\%)	Invalid parameterization for current setting, check configuration, check Move program of Mailbox commands where applicable

Error No.:	Designation	Description	Possible cause/Solution
1218	CTRLOUTP_CURR_ PARAM2	Configuration: current controller password does not agree with current controller parameters (750-673).	Configuration: Check the parameters for current regulation (750-673) with Password2 for current regulation.
1241	IO BITINDEX TOLARGE	Access to non-existing bit (internal)	Configuration, check Move program and Mailbox commands for incorrect bit addresses.
1242	IO_ILLEGAL_USER BITNR	Bit cannot be modified by user	An attempt was made to change a bit not linked to MZERO or MONE using the Move program of Mailbox command
1243	IO_USERBIT_READ ONLY	Bit cannot be written	Bit not authorized for external write access.
1245	IO_RECURSIVE_LIN	Nesting of linked bits exceeds parameters	A linkable bit was linked to a linkable bit that was linked to a linkable bit, etc.; A linkable bit may be linked to itself.
1246	IO_TIMER_1	Configuration: filter function not defined	Check configuration for filter functions.
1247	IO_UNKNOWN_TIM ER	A filter with this number does not exist	Check configuration for filter functions.
1248	IO_TIMERMODE	Filter function does not permit write access	The current filter function configuration does not permit writing of the filter.
1249	IO BITNOT IMPLEMENTED	Requested bit not implemented (internal)	A bit being used can not be queried (internal error).
1251	IO_DIVISION_ZERO	Filter function division: division by zero	Analyze run program and ensure that the denominator can never be 0 .
1261	$\begin{aligned} & \text { MEAS-- } \\ & \text { SETPOSITION } \end{aligned}$	For operation with the rotary axis, the command SET_POSITION was used with a position outside the rotary axis.	For this parameter, the precondition Drive_Range_Neg \leq setpoint position \leq Drive_Range_Pos must be fulfilled.
1311	TBL_PROGRAM_ST OP1	Motion program terminated with error message 1	Check the termination condition of the Move program.
1312	TBL_PROGRAM_ST OP2	Motion program terminated with error message 2	Check the termination condition of the Move program.

WAGO-I/O-SYSTEM 750
$\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Error } \\ \text { No.: }\end{array} & \text { Designation } & \text { Description } & \text { Possible cause/Solution } \\ \hline 1313 & \begin{array}{l}\text { TBL_PROGRAM_ST } \\ \text { OP3 }\end{array} & \begin{array}{l}\text { Motion program } \\ \text { terminated with error } \\ \text { message 3 }\end{array} & \begin{array}{l}\text { Check the termination } \\ \text { condition of the Move } \\ \text { program. }\end{array} \\ \hline 1314 & \begin{array}{l}\text { TBL_PROGRAM_ST } \\ \text { OP4 }\end{array} & \begin{array}{l}\text { Motion program } \\ \text { terminated with error } \\ \text { message 4 }\end{array} & \begin{array}{l}\text { Check the termination } \\ \text { condition of the Move } \\ \text { program. }\end{array} \\ \hline 1315 & \begin{array}{l}\text { TBL_PROGRAM_ST } \\ \text { OP5 }\end{array} & \begin{array}{l}\text { Motion program } \\ \text { terminated with error } \\ \text { message 5 }\end{array} & \begin{array}{l}\text { Check the termination } \\ \text { condition of the Move } \\ \text { program. }\end{array} \\ \hline 1316 & \begin{array}{l}\text { TBL_PROGRAM_ST } \\ \text { OP6 }\end{array} & \begin{array}{l}\text { Motion program } \\ \text { terminated with error } \\ \text { message 6 }\end{array} & \begin{array}{l}\text { Check the termination } \\ \text { condition of the Move } \\ \text { program. }\end{array} \\ \hline 1317 & \begin{array}{l}\text { TBL_PROGRAM_ST } \\ \text { OP7 }\end{array} & \begin{array}{l}\text { Motion program } \\ \text { terminated with error } \\ \text { message 7 }\end{array} & \begin{array}{l}\text { Check the termination } \\ \text { condition of the Move } \\ \text { program. }\end{array} \\ \hline 1354 & \begin{array}{l}\text { OPC_MULTIMODE_ } \\ 1\end{array} & \begin{array}{l}\text { Multiple modes selected }\end{array} \\ \hline 1353 & \begin{array}{l}\text { TBL_PROGRAM_EN } \\ \text { D }\end{array} & \begin{array}{l}\text { Move program not } \\ \text { ended properly }\end{array} & \begin{array}{l}\text { Molection of mode is } \\ \text { ambiguous. }\end{array} \\ \text { without the regular Stop } \\ \text { command. }\end{array}\right\}$

Error No.:	Designation	Description	Possible cause/Solution
1355	$\mathrm{OPC}_{2} \mathrm{MULTIMODE}-$	Multiple modes selected	Selection of mode is ambiguous.
1356	OPC_WHOOPS1	Unknown mode selected (internal).	Unknown mode selected (internal).
1358	OPC_EXT_ERROR	User bit Error_Set is set	Reset user bit Error_Set.
1359	OPC_MODE	The selected operating mode is not available in the current application	Ensure that a valid operating mode is selected.
1361	OPC_QUIT_START	Start not accepted as long as Quit is active	Set the control bit Error_Quit to 0 .
1362	OPC_TMS_RDY	Start/selection of an operating mode is not accepted when TMS is not ready	Monitor supply voltages.
1363	OPC_TMS_SPI	Start/selection of an operating mode is not accepted when SPI contact is not present	24 V control voltage dropped
1411	PARTMODL_CURRE NT	internal	internal
1412	PARTMODL_CURRE NT_SET	Current setting could not be executed.	Check parameter for Move command SET_CURRENT
1413	PARTMODL_CURRE NT_TIME	Time limit for overcurrent reached	The drive has been operated too long at a current $>150 \%$. Check move profile and current setting.
1414	PARTMODL_FIFON OTREADY	internal	internal
1415	PARTMODL_POSITI ON_RANGE	The movement calculator has determined partial movement that exceeds the internal 32-bit position range.	Check movement parameters. This error occurs on unrealistic settings for velocity, acceleration or positions. With extreme parameters, braking from a high speed, for example, at the lowest deceleration yields a brake path that far exceeds the internal value range.
1416	PARTMODL_SPEED _RANGE	The movement calculator has determined partial movement that exceeds the permissible velocity range.	Check the specified velocities

WAGO-I/O-SYSTEM 750
$\left.\left.\begin{array}{|l|l|l|l|}\hline \begin{array}{l}\text { Error } \\ \text { No.: }\end{array} & \text { Designation } & \text { Description } & \text { Possible cause/Solution } \\ \hline 1417 & \begin{array}{l}\text { PARTMODL_INTER } \\ \text { N1 }\end{array} & \begin{array}{l}\text { Unknown status of } \\ \text { internal FIFO: internal }\end{array} & \text { internal } \\ \hline 1418 & \begin{array}{l}\text { PARTMODL_- } \\ \text { ALIGNTIMOUT }\end{array} & \begin{array}{l}\text { Timeout in the motor } \\ \text { alignment } \\ \text { (750-673) }\end{array} & \text { Check drive parameters. } \\ \hline 1431 & \text { PROT_REF_DIR } & \begin{array}{l}\text { Reference motion } \\ \text { without direction setting }\end{array} & \begin{array}{l}\text { The reference run via the } \\ \text { process image must be } \\ \text { informed of the starting } \\ \text { direction through } \\ \text { Direction_Neg or } \\ \text { Direction_Pos. }\end{array} \\ \hline 1432 & \begin{array}{l}\text { PULSE_TRAIN_NO_- } \\ \text { CAM_ACTIVE }\end{array} & \begin{array}{l}\text { Pulse train generator } \\ \text { cannot be started when } \\ \text { camshaft is not defined. }\end{array} & \begin{array}{l}\text { Download the definition for } \\ \text { the pulse chain from the } \\ \text { camshaft table. }\end{array} \\ \hline 1433 & \begin{array}{l}\text { PROT_UNKNOW_M } \\ \text { ODE }\end{array} & \begin{array}{l}\text { No application selected }\end{array} & \begin{array}{l}\text { Check configuration of } \\ \text { mode 1. }\end{array} \\ \hline 1434 & \begin{array}{l}\text { PROT_TEST_ } \\ \text { MODE }\end{array} & \begin{array}{l}\text { UNITS_POS_INT_RE } \\ \text { SULT } \\ \text { Special function } \\ \text { Integration Test active }\end{array} & \begin{array}{l}\text { The module is switched to } \\ \text { the test mode via register } \\ 32 .\end{array} \\ \hline \text { in user-specific unit to } \\ \text { internal unit: range } \\ \text { exceeded }\end{array}\right] \begin{array}{l}\text { Configuration: Check units } \\ \text { conversion.. }\end{array}\right\}$

Error No.:	Designation	Description	Possible cause/Solution
1512	UNITS_POS_USER_ RESULT	Conversion of position in internal unit to userspecific unit: range exceeded	Configuration: Check units conversion.
1513	UNITS_SPEED_INT RESULT	Conversion of speed in user-specific unit to internal unit: range exceeded	Configuration: Check units conversion.
1514	UNITS_SPEED_USE R_RESULT	Conversion of speed in internal unit to userspecific unit: range exceeded	Configuration: Check units conversion.
1515	UNITS_ACC_INT_R ESULT	Conversion of acceleration in userspecific unit to internal unit: range exceeded	Configuration: Check units conversion.
1516	UNITS_ACC_USER_ RESULT	Conversion of acceleration in internal unit to user-specific unit: range exceeded	Configuration: Check units conversion.
1517	UNITS_PARAM_ ZERO	Parameter for conversion is zero	Configuration: Units conversion: Divisor is zero
1521	SYS_MODE	Configuration: application cannot be executed on this terminal. Acceptable value range: 1,5	Check value ranges 1, 5
1551	MCALC_SPEED1	internal	internal
1552	MCALC_SPEED2	internal	internal
1553	MCALC_SPEED3	internal	internal
1554	MCALC_ACC1	During the ramp run at a defined ramp time the movement calculator has determined partial movement that exceeds the internal value range for acceleration	Adapt ramp time setting.
1555	MCALC_ACC2	Same as MCALC_ACC1	Same as MCALC_ACC1
1556	MCALC_ACC3	During the ramp run at a defined ramp path the movement calculator has determined partial movement that exceeds the internal value range for acceleration	Adapt ramp path setting.

WAGO-IIO-SYSTEM 750 I/O Modules

Error No.:	Designation	Description	Possible cause/Solution
1557	MCALC_PARA	The movement calculator has received invalid parameters	Check all parameters: acceleration, moving velocity, ramp time, ramp path, ramp type, starting position, target position
1561	MCALC_TIME1	Internal motion time range exceeded	Check parameterization. *
1562	MCALC_TIME2	The movement calculator has determined partial movement that exceeds the internal time range ($>500 \mathrm{~h}$)	Check parameterization. *
1563	MCALC_TIME3	Internal motion time range exceeded	Check parameterization. *
1564	MCALC_TIME4	The movement calculator has determined a movement sequence that exceeds the internal time range ($>500 \mathrm{~h}$).	Check parameterization. *
1565	MCALC_DIST1	Internal motion travel range exceeded	Check parameterization. *
1566	MCALC_DIST2	Internal motion travel range exceeded	Check parameterization. *
1567	MCALC_DIST3	Same as PARTMODL POSITION_RANGE	Check parameterization. *
1568	MCALC_DIST4	Internal motion travel range exceeded	Check parameterization. *
1569	MCALC_DIST5	Same as PARTMODL POSITION_RANGE	Check parameterization. *
1571	MCALC_MOVE1	Internal: Movement calculator can find no solution	Check parameterization. *
1572	MCALC_MOVE2	Internal: Movement calculator can find no solution	Check parameterization. *
1573	MCALC_MOVE3	Internal: Movement calculator can find no solution	Check parameterization. *
1574	MCALC_CURR	Current setpoint outside acceptable range	Reduce default value
1611	ERR_ILLEGAL_ERR ORCODE	Illegal error code to be signaled	internal
1715	SPI TELEGRAM3 FAIL	Timeout for data transfer (750-673)	internal

Error No.:	Designation	Description	Possible cause/Solution
1716	SPI_VAR_READ_ FAIL	Internal buffer of SPI data transfer is too small	internal
1717	SPI_VAR_READ_ FAIL2	Internal error of SPI data transfer	internal
1718	SPI_VAR_LAST_ READ	internal error	internal
1811	TMS	internal TMS error	internal
1812	TMS OVERCURRENT_ HW	Overcurrent output stage (750-673)	Overcurrent output stage (750-673): Short circuit or ground leak on the motor circuit
1813	TMS OVERVOLTAGE_ 24V	Overvoltage in the 24 V control voltage	24 V control voltage shall not exceed 36 V .
1814	TMS UNDERVOLTAGE 24 V	Undervoltage in the 24 V control voltage	24 V control voltage shall not exceed 16 V .
1815	```TMS OVERVOLTAGE_V_ DC```	Overvoltage in the output voltage supply	Output voltage supply shall not be larger than that configured in parameter 410.
1816	TMS UNDERVOLTAGE V_DC	Undervoltage in the output voltage supply	Output voltage supply shall not be smaller than that configured in parameter 408.
1817	TMS_V_DC	Error in parameterization of output voltage supply monitoring	Parameter 408 or 410 is configured incorrectly.
1818	TMS_ENC_ RESOLUTION	Unacceptable resolution of incremental encoder configured	Resolution of 0 is not allowed.
1819	TMS_MOTOR FULL_STEPS	Unacceptable number of motor full steps configured	Number of motor full steps shall not be 0 and must be divisible by four.
1823	TMS SPEEDMEASURETI MEA	Unacceptable gate time for absolute rotational speed measurement	Parameter 428 is configured incorrectly.
1824	TMS SPEEDMEASURETI MEOUTA	Unacceptable timeout period for absolute rotational speed measurement	Parameter 432 is configured incorrectly.
1825	TMS SPEEDMEASURETI MEV	Unacceptable gate time for internal rotational speed measurement	Parameter 436 is configured incorrectly.

WAGO-I/O-SYSTEM 750 I/O Modules

Appendix
Error Blink Codes

Error No.:	Designation	Description	Possible cause/Solution
1826	TMS_- SPEEDMEASURETI MEOUTV	Unacceptable timeout period for internal rotational speed measurement	Parameter 440 is configured incorrectly.
1827	TMS_SENSOR_ SUPPLY_SHORT	Short circuit/overload of incremental encoder supply	Check incremental encoder connection.
1831	TMS_- SPEEDMEASUREDI VZERO_1	internal	internal
1832	TMS_- SPEEDMEASUREDI VZERO_2	internal	internal
1833	TMS_ENCODER_ RESOLUTION	Unacceptable incremental encoder resolution	Incremental encoder resolution shall not be 0.
1893	TMS_TEMP_HIGH	Output stage temperature higher than max. acceptable temp.	Decrease load cycle.
1891	TMS_MODE_ERROR	Unacceptable TMS mode	internal
1859	TMS_CURRENT_ CONTR_TYPE	Unacceptable current controller type	Correct parameter 396.
TMS_BRACKING_V			
LOW			

$\begin{aligned} & \text { Error } \\ & \text { No.: } \end{aligned}$	Designation	Description	Possible cause/Solution
1894	TMS_TEMP_HIGH_ WARN	Output stage temperature higher than parameterized warning threshold	Check parameters, decrease load cycle.
1911	COMMAND IS RUNNING	Command can not be executed, as another command is currently being processed	internal
1912	HIGH_PRIO COMMAND_IS RUNNING	Command can not be executed, as another command of higher priority is currently being processed	internal
1931	PARTMODL LIMITSWITCH	Command can not be executed, as a limit switch is active	Move drive away from limit switch.
2811	KBUS	internal	Internal
2821	CFG_FACTORY_ LOAD	A Factory_Default data set has been copied for upload to RAM	A CONFIG_RESTORE command has been executed without a warm start. The module is not operational is this state. \rightarrow Conduct a warm start or Power-on reset.
2831	MEASURE_ERR1	internal: hardware unknown	internal
2832	MEASURE_ERR2	same as MEASURE_ERR1	internal
2833	MCALC_INTERN1	Internal: error in travel calculation	internal
2834	MCALC_INTERN2	Internal: error in travel calculation	internal
2835	MCALC_INTERN3	Internal: unknown acceleration profile	internal
2836	MCALC_INTERN4	MCALC_INTERN3	internal
2837	MCALC_INTERN5	MCALC_INTERN3	internal
2838	MCALC_INTERN6	MCALC_INTERN3	internal
2839	MCALC_INTERN7	MCALC_INTERN3	internal
2841	MCALC_INTERN8	MCALC_INTERN3	internal
2842	MCALC_INTERN9	MCALC_INTERN3	internal
2843	MCALC_INTERN10	MCALC_INTERN3	internal

WAGO-I/O-SYSTEM 750 I/O Modules

Appendix

Error No.:	Designation	Description	Possible cause/Solution
2844	MCALC_INTERN11	MCALC_INTERN3	internal
2845	MCALC_BUFFER_F ULL	internal: buffer overflow	internal
2846	MOVECALC_ACC2	internal	internal
2863	TEST_EERPOM_FAI LURE	Auto test: EEPROM failure	Hardware defective
2864	TEST_CPLD_FAILU RE	Auto test: CPLD failure	Hardware defective
2865	TEST_INVALID_MO DULE	Auto test: unknown hardware	Hardware defective
2866	GENERIC_TEST	Auto test: invalid hardware	Hardware defective
2871	$\begin{aligned} & \text { RS232_TX_TIMEOU } \\ & \mathrm{T} \end{aligned}$	internal:time limit exceeded in debug interface	internal
2881	SYS_IDLE_RECURS IVE	internal	internal
2882	SYS_SPI_TIMEOUT	internal	internal
2883	SPI_CONTACTLOST	No more contact to TMS	24 V control voltage possibly dropped
2891	VERSION UNKNO WN_IDENT	Unknown hardware	Hardware defective
2892	VERSION_NOT_CO MPATIBLE_HW	Hardware not compatible with software	Hardware defective
2893	VERSION_WRONG TMS VERSION	Wrong version of TMS firmware	Update TMS to correct version.
2911	TMS NOTSPECIFIED	unspecified TMS error	internal
2912	TMS_RESET	TMS restart detected	Check 24 V control voltage.
2913	SPI_TMS PARAMINDEX	TMS: wrong parameter index in SPI transfer	internal
2914	SPI_TMS TOGGLETIMEOUT	TMS: SPI transfer timeout	internal
2915	SPI_TMS SENSORDIRECTION	TMS: wrong rotational direction of motor or encoder	Reconnect motor circuits or incremental encoder connector.

Error No.:	Designation	Description	Possible cause/Solution
2916	$\begin{aligned} & \text { SPI_TMS_NO_ } \\ & \text { SENSOR } \end{aligned}$	TMS: no incremental encoder during alignment	Check incremental encoder connector
2917	SPI_TMS_Z_JITTER	TMS: Z pulse outside the acceptable jitter range	The Z pulse was recorded at various positions. -> Check incremental encoder connector -> Check parameter 426
2918	$\begin{aligned} & \text { ALIGN_WITHOUT_ } \\ & \mathrm{Z} \end{aligned}$	TMS: Motor alignment with stored measurement values requires Z pulse configuration	Configure Z pulse -> Check parameter 413
3111	INT_KBUS	internal	internal
3112	INT_WATCHDOG	internal: watchdog	internal
3113	INT_SPURIOUS	internal	internal
3114	INT_UNUSED	internal	internal
3115	INT_FIQ	internal	internal
3116	INT_SWI	internal	internal
3117	INT_UNDEF_INST	internal	internal
3118	INT_FETCH	internal	internal
3119	INT_DATA_ACESS	internal	internal
3121	INT_ROM_ISR	internal	internal
3122	INT_STACK OVERFLOW	internal	internal
3142	$\begin{aligned} & \text { SYS_PLL_NOT_LOC } \\ & \text { KED } \end{aligned}$	internal	internal
3143	$\begin{aligned} & \text { SYS_ADC_TIMEOU } \\ & \mathrm{T} \end{aligned}$	internal	internal
3144	SYSTEMEXIT	internal	internal
3155	ERR_ILLEGAL_ERR ORCODE	Illegal error code to be signaled	internal
3166	OPC_MULTIMODE_ 1	internal	internal
3167	$\begin{aligned} & \text { OPC_MULTIMODE_ } \\ & 2 \end{aligned}$	internal	internal
3168	OPC_WHOOPS1	internal	internal
3179	TBL_COPY_FAILED	Error when writing to EEPROM	internal

WAGO-I/O-SYSTEM 750
I/O Modules

Error No.:	Designation	Description	Possible cause/Solution
3211	PARTMODL_FIFON OTREADY	internal	internal
3212	PARTMODL_POSITI ON_RANGE	internal	internal
3213	PARTMODL_SPEED -RANGE	internal	internal
3214	PARTMODL_INTER N1	internal	internal
3215	PARTMODL_ERR4	internal	internal
3216	PARTMODL_ERR5	internal	internal
3231	TBL_INVALID	internal	internal
3232	TBL_CP2EEPROM_F AIL	internal	internal
3889	ERROR_WARN_-_ BRIDGE_B_LOW BRIDGE_A_LOW	No motor detected at output stage B output stage A	Check motor connection
3233	TBL_COPY_INVALI D	internal	
3277	TEST_ENDOF FUNCTION_TEST ALIGN	Self test completed	
3234	TBL_UNKNOWN_T TYPE	internal	internal
A reset is required after a			
self test.			

Error No.:	Designation	Description	Possible cause/Solution
5891	ERROR_WARN_-_ TMS_TRACKING_V	Contouring error speed	Increase parameter 482 (TrackingError_Range_Spe ed).
5892	ERROR_WARN_-_ TMS_TRACKING_S	Position contouring error	Increase parameter 484 (TrackingError_Range_Posi tion).
5893	ERROR_WARN_-_ TMS_TEMP_HIGH_ WARN	Output stage temperature higher than parameterized warning threshold	Either decrease current or increase parameter 406 (Warn_Threshold_Tempera ture)
5917	ERROR_WARN_SPI -TMS_Z_JITTER	TMS: Z pulse outside the acceptable jitter range	Increase parameter 426 (Encoder_IndexMeasureJitt erRange).

WAGO-I/O-SYSTEM 750
I/O Modules

4.5 Bit Field for I/O Driver

The bit functions described in this table relate to the standard application stepper positioning control

In the description of respective application it is shown when bits have significance in other applications.

The following conventions apply:

- Source bits are assigned numbers 0 to 127 and may not be used as target bits. A source bit may reference several target bits.
- Target bits are assigned numbers 128 to 255 and may also be used as source bits. Target bits have exactly one source.
- References are stored in the configuration table. The names of the table entries correspond to those in the bit table. The prefix Ptr is placed in front of the identifier.
- The standard link between the source and target is entered in the column "Target/Source". This corresponds to the WAGO default settings (FACTORY_DEFAULT_1).

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
ZERO	0	$0 x 00$	SRC	0	-	Bit is always cleared	
ONE	1	$0 x 01$	SRC	1	-	Bit is always set	
MZERO	2	$0 x 02$	SRC	0	-	A bit linked to MZERO is originally cleared after reset, but may be manipulated by mailbox commands or motion programs.	
MONE	3	$0 x 03$	SRC	1			
Reset	4	$0 x 04$	SRC	KBUS_ST3_7	$0 x 97$	A bit linked to MZERO is originally set after reset, but may be manipulated by mailbox commands or motion programs.	

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
Warning	5	0x05	SRC	KBUS_ST3_6	0x96	Warning status of driver A warning can be acknowledged using Error_Quit.	
						0	The drive has no warning.
						1	The drive has a warning.
KBUS Active	6	0x06	SRC	-	-	Internal data bus communication active	
						0 :	Internal data bus communication for more than 100 ms
						1:	Internal data bus communication present
	7	0x07					
On_Target	8	0x08	SRC	$\begin{aligned} & \text { KBUS_ST2_0 } \\ & \text { OUT1 } \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 88 \\ & 0 \mathrm{xA} 0 \end{aligned}$	Target reached The significance of this bit depends on the selected operating mode.	
						Step positioning:	
						0 :	The specified target position has not been reached.
						1:	The specified setpoint within the target window.
						Run program:	
						0 :	TargetWindowPosition has not been reached.
						1:	TargetWindowPosition has been reached.
						Referencing	
						0 :	The reference point has not been approached and set.
						1:	The reference point has been moved to and set successfully.
						Jog Mode:	
						0 :	The bit is not used in this mode and remains at 0 .
						1:	The bit is not used in this mode and remains at 0 .
						Mailbox mode:	
						0:	Function of mailbox command.
						1 :	Function of mailbox command.

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
Busy	9	0x09	SRC	$\begin{aligned} & \text { KBUS_ST2_1 } \\ & \text { LED E } \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 89 \\ & 0 \mathrm{xD} 0 \end{aligned}$	Busy: the selected operating mode is active and not yet finished. It is possible that the operating mode was cancelled.	
						Step positioning:	
						0 :	Step positioning not running.
						1:	Step positioning running.
						Run program:	
						0 :	The Run program is not running.
						1:	The Run program is running.
						Reference run:	
						0 :	Reference run not in operation.
						1:	Reference run in operation.
						Jog Mode:	
						0 :	Motor at standstill.
						1:	The Jog mode is running, i.e. the motor has been started using Jog_Pos or Jog_Neg.
						Mailbox mode:	
						0 :	No command is active.
						1:	A command is active.
StandStill	10	0x0A	SRC	KBUS_ST2_2	0x8A	Drive standstill, frequency output at 0 .	
						0 :	Motor is turning.
						1:	Motor at standstill.
On_Speed	11	0x0B	SRC	KBUS_ST2_3	0x8B	Drive speed reached	
						0 :	The drive has not reached its setpoint speed.
						1:	The drive has reached its setpoint speed.
Direction	12	0x0C	SRC	KBUS_ST2_4	0x8C	Direction of rotation is valid only when StandStill is not set to 1 .	
						0 :	Drive moving in the negative direction.
						1:	Drive moving in the positive direction.

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
$\begin{array}{\|l} \text { Reference_O } \\ \text { K } \end{array}$	13	0x0D	SRC	KBUS_ST2_5	0x8D	Set when reference run has been successfully concluded.	
						0 :	Upon switching on of the module, the bit is set to 0 . It is also set to 0 when the reference motion is initiated.
						1:	The reference point has been successfully located in the reference run mode.
PreCalc_Ack	14	0x0E	SRC	KBUS_ST2_6	0x8E	Setpoints from Mode 2.2 saved. This bit is set when the setpoint save mode has been requested with PreCalc and precalculation of a movement has been successfully completed.	
						0:	Precalculation not yet performed.
						1:	Precalculation performed.
Error	15	0x0F	SRC	$\begin{aligned} & \text { KBUS_ST2_7 } \\ & \text { OUT2 } \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 8 \mathrm{~F} \\ & 0 \mathrm{xA1} \end{aligned}$	Drive error status. An error can be acknowledged using Error_Quit.	
						0 :	No error present for the drive.
						1:	Error present for the drive.
Ready	16	0x10	SRC	KBUS_ST1_0	0x80	Ready	
						0 :	The module is not ready for operation. Either a corresponding request is present via Enable, or an error has resulted in cancellation of Ready. When the bit switches from 1 to 0 the output stage is deactivated, or the output frequency is set to 0 .
						1:	Readiness for operation has been requested via Enable and no error is present.
$\begin{aligned} & \text { Stop_N_AC } \\ & \mathrm{K} \end{aligned}$	17	0x11	SRC	$\begin{aligned} & \text { KBUS_ST1_1 } \\ & \text { LED G } \end{aligned}$	$\begin{aligned} & 0 \times 81 \\ & 0 x D 2 \end{aligned}$	Drive stop inverted	
						0 :	The bit Stop1_N or Stop2_N is set to 0 . The motor is set to 0 (StandStill set to 1). Start can not be used to start up the unit.
						1:	The bits Stop1_N and Stop2_N are both set to 1 , or the drive is braking the unit.

WAGO-I/O-SYSTEM 750 I/O Modules

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
Start_ACK	18	0x12	SRC	KBUS_ST1_2	0x82	Start process in operating mode
						$0:$ $\begin{array}{l}\text { This bit is also set to } 0 \text { when the Start } \\ \text { request is canceled. }\end{array}$
						1: The rising edge function is a function of the selected operating mode.
						Single positioning Speed control The specified setpoint have been accepted from the process image.
						Run program The run program has been started.
						Referencing The reference run has been started.
						JogMode No effect. Handshake not performed.
						Mailbox mode Handshake not performed. As soon as the mailbox mode has been enabled, the corresponding commands can be transmitted via the mailbox.
$\begin{aligned} & \text { Command_A } \\ & \text { CK[1] } \end{aligned}$	19	0x13	SRC	KBUS_ST1_3	0x83	Selecting the operating mode 0: Idle mode 1: Single positioning For this operating mode, the mailbox must be disabled. 2: Run program Speed Control Reference motion JogMode The drive can be operated manually at the setup speed. Control is performed via Input3 (Jog_Pos) and Input4 (Jog_Neg) Run commands via mailbox 16: In this mode, all movement commands are issued directly via mailbox.
$\begin{array}{\|l} \hline \text { Command_A } \\ \text { CK[2] } \\ \hline \end{array}$	20	0x14	SRC	KBUS_ST1_4	0x84	
$\begin{aligned} & \text { Command_A } \\ & \text { CK[3] } \end{aligned}$	21	0x15	SRC	KBUS_ST1_5	0x85	
$\begin{aligned} & \text { Command_A } \\ & \text { CK[4] } \end{aligned}$	22	0x16	SRC	KBUS_ST1_6	0x86	
$\begin{aligned} & \text { Command_A } \\ & \text { CK[5] } \end{aligned}$	23	0x17	SRC	KBUS_ST1_7	0x87	
Break	24	0x18	SRC	-	-	Brake
						0: \quad The drive is being braked.
						1: The brake is vented.
ERR_Code	25	0x19	SRC	LED H	0xD3	This bit is usually connected to a LED. IF an error occurs, the errors is output as flash code.

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
SetupSpeed Active_ACK	26	0x1A	SRC	-	-	Setting-up operation is active. When this bit is set, the drive speed is limited to the defined setup speed. Acceleration is not limited. The currently valid acceleration value is applied.	
						0 :	Setup mode is not active.
						1:	Setting-up operation is active.
Program Running	27	0x1B	SRC	LED C	0xD1	A motion program is in process.	
Ramp_Up	28	0x1C	SRC	-	-	Set during acceleration phase	
Ramp_Down	29	0x1D	SRC	-	-	Set during delay phase	
	30	0x1E					
	31	0x1F					
Trace_Stored	32	0x20	SRC	-	-		bit is set when all data sets CE_VAR1/2 have been saved in the Trace e_Stored is cleared each time trace rding is started $(0 \rightarrow 1$ to Trace_Trigger Trace_Armed is also set). A trace can be out via the table commands START, DLD_CONT and DLD_END.
	33	0x21					
	34	0x22					
	35	0x23					
	36	0x24					
	37	0x25					
Encoder_A	38	0x26		LED_E	0xD4	Internal signal: status of incremental encoder, track A.	
Encoder_B	39	0x27		LED_F	0xD5	Internal signal: status of incremental encoder, track B.	
Err_Range_ Neg	40	0x28	SRC	-	-	Moving range exceeded when moving in negative direction.	
						0 :	The bottom limit for the movement range has not been violated.
						1:	The bottom limit for the movement range has been violated.

WAGO-I/O-SYSTEM 750
I/O Modules

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
$\begin{aligned} & \text { Err_Range_ } \\ & \text { Pos } \end{aligned}$	41	0x29	SRC	-	-	Moving range exceeded when moving in positive direction.
						$0:$ $\begin{array}{l}\text { The top limit for the movement range has } \\ \text { not been violated. }\end{array}$
						1: $\quad \begin{aligned} & \text { The top limit for the movement range has } \\ & \text { been violated. }\end{aligned}$
Err_Range	42	0x2A	SRC	-	-	This parameter is set when it has been detected by Err_Range_Neg, Err_Range_Pos, LimitSwitch_Pos or LimitSwitch_Neg that the permissible movement range has been violated.
	43	0x2B				
	44	0x2C				
	45	0x2D				
Encoder_Z_T oggle	46	0x2E	SRC	-	-	This bit toggles the Z signal from the incremental encoder at the rising edge.
CAM9	47	0x2F	SRC	-	-	Camshaft 9
Input1	48	0x30	SRC	$\begin{aligned} & \text { KBUS_ST3_0 } \\ & \text { Stop1_N } \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \mathrm{x} 90 \\ 0 \mathrm{xC} 2 \\ \hline \end{array}$	Input 1
Input2	49	0x31	SRC	$\begin{aligned} & \text { KBUS_ST3_1 } \\ & \text { Set_Reference } \end{aligned}$	$0 \mathrm{x} 91$ 0xBC	Input 2
Input3	50	0x32	SRC	KBUS_ST3_2 Set_Reference	0×92 0xCA	Input 3
Input 4	51	0x33	SRC	$\begin{aligned} & \text { KBUS_ST3_3 } \\ & \text { Jog_Neg } \end{aligned}$	0×93 0xCB	Input 4
Input5	52	0x34	SRC	KBUS_ST3_4 LimitSwitch_P os	$\begin{aligned} & 0 \mathrm{x} 94 \\ & 0 \mathrm{xC} 0 \end{aligned}$	Input 5
Input6	53	0x35	SRC	$\begin{aligned} & \text { KBUS_ST3_5 } \\ & \text { LimitSwitch_N } \\ & \text { eg } \end{aligned}$	$\begin{aligned} & 0 \mathrm{x} 95 \\ & 0 \mathrm{xC} 1 \end{aligned}$	Input 6
Input 7	54	0x36	SRC	-	-	Input 7
Input8	55	0x37	SRC	-	-	Input 8
CAM1	56	0x38	SRC	-	-	Camshaft 1
CAM2	57	0x39	SRC	-	-	Camshaft 2
CAM3	58	0x3A	SRC	-	-	Camshaft 3
CAM4	59	0x3B	SRC	-	-	Camshaft 4

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
CAM5	60	0x3C	SRC	-	-	Camshaft 5
CAM6	61	0x3D	SRC	-	-	Camshaft 6
CAM7	62	0x3E	SRC	-	-	Camshaft 7
CAM8	63	0x3F	SRC	-	-	Camshaft 8
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_0 } \end{aligned}$	64	0x40	SRC	Enable	0xB0	Internal bus control byte 1 bit 0
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_1 } \end{aligned}$	65	0x41	SRC	Stop2_N	0xB1	Internal bus control byte 1 bit 1
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_2 } \end{aligned}$	66	0x42	SRC	Start	0xB2	Internal bus control byte 1 bit 2
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_3 } \end{aligned}$	67	0x43	SRC	M_Positioning	0xB3	Internal bus control byte 1 bit 3
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_4 } \end{aligned}$	68	0x44	SRC	M_Program	0xB4	Internal bus control byte 1 bit 4
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_5 } \end{aligned}$	69	0x45	SRC	M_Reference	0xB5	Internal bus control byte 1 bit 5
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_6 } \end{aligned}$	70	0x46	SRC	M_Jog	0xB6	Internal bus control byte 1 bit 6
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L1_7 } \end{aligned}$	71	0x47	SRC	$\begin{aligned} & \text { M_DriveBxMb } \\ & \text { x } \end{aligned}$	0xB7	Internal bus control byte 1 bit 7
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L2_0 } \end{aligned}$	72	0x48	SRC	Freq Range_Sel_0	0xC4	Internal bus control byte 2 bit 0
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L2_1 } \end{aligned}$	73	0x49	SRC	Freq Range_Sel_1	0xC5	Internal bus control byte 2 bit 1
$\begin{array}{\|l} \hline \text { KBUS_CTR } \\ \text { L2_2 } \\ \hline \end{array}$	74	0x4A	SRC	Acc Range_Sel_0	0xC6	Internal bus control byte 2 bit 2
$\begin{array}{\|l\|} \hline \text { KBUS_CTR } \\ \text { L2_3 } \\ \hline \end{array}$	75	0x4B	SRC	Acc Range_Sel_1	0xC7	Internal bus control byte 2 bit 3
$\begin{array}{\|l} \hline \text { KBUS_CTR } \\ \text { L2_4 } \\ \hline \end{array}$	76	0x4C	SRC	-	-	Internal bus control byte 2 bit 4
$\begin{array}{\|l\|} \hline \text { KBUS_CTR } \\ \text { L2_5 } \\ \hline \end{array}$	77	0x4D	SRC	-	-	Internal bus control byte 2 bit 5
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L2_6 } \end{aligned}$	78	0x4E	SRC	PreCalc	0xBD	Internal bus control byte 2 bit 6
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L2_7 } \\ & \hline \end{aligned}$	79	0x4F	SRC	Error_Quit	0xBF	Internal bus control byte 2 bit 7
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_0 } \end{aligned}$	80	0x50	SRC	$\begin{aligned} & \text { Set_Actual_Po } \\ & \mathrm{s} \end{aligned}$	0xC8	Internal bus control byte 3 bit 0
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_1 } \end{aligned}$	81	0x51	SRC	-	-	Internal bus control byte 3 bit 1
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_2 } \end{aligned}$	82	0x52	SRC	Direction_Pos	0xBA	Internal bus control byte 3 bit 2

WAGO-I/O-SYSTEM 750
I/O Modules

Bit Field for I/O Driver

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_3 } \end{aligned}$	83	0x53	SRC	Direction_Neg	0xBB	Internal bus control byte 3 bit 3
$\begin{array}{\|l\|} \hline \text { KBUS_CTR } \\ \text { L3_4 } \\ \hline \end{array}$	84	0x54	SRC	-	-	Internal bus control byte 3 bit 4
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_5 } \end{aligned}$	85	0x55	SRC	-	-	Internal bus control byte 3 bit 5
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_6 } \end{aligned}$	86	0x56	SRC	-	-	Internal bus control byte 3 bit 6
$\begin{aligned} & \text { KBUS_CTR } \\ & \text { L3_7 } \end{aligned}$	87	0x57	SRC	Reset_Quit	0xB9	Internal bus control byte 3 bit 7
	88	0x58				
	89	0x59				
	90	0x5A				
	91	0x5B				
	92	0x5C				
	93	0x5D				
	94	0x5E				
	95	0x5F				
	96	0x60				
	97	0x61				
	98	0x62				
	99	0x63				
	100	0x64				
	101	0x65				
	102	0x66				
	103	0x67				
	104	0x68				
	105	0x69				
	106	0x6A				
	107	0x6B				
	108	0x6C				
	109	0x6D				
	110	0x6E				
	111	0x6F				
	112	0x70				
	113	0x71				
	114	0x72				

264 - Appendix
Bit Field for I/O Driver

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
	115	0x73				
	116	0x74				
	117	0x75				
	118	0x76				
	119	0x77				
	120	0x78				
	121	0x79				
	122	0x7A				
	123	0x7B				
	124	0x7C				
	125	0x7D				
	126	0x7E				
	127	0x7F				
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST1_0 } \end{aligned}$	128	0x80	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Ready	0x10	Internal data bus status byte 1 bit 0 Ready
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST1_1 } \end{aligned}$	129	0x81	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Stop_N_ACK	0x11	Internal data bus status byte 1 bit 1 Stop_N_ACK
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST1_2 } \end{aligned}$	130	0x82	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Start_ACK	0x12	Internal data bus status byte 1 bit 2 Start_ACK
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST1_3 } \end{aligned}$	131	0x83	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Command_Ack $[1]$	0x13	Internal data bus status byte 1 bit 3 Command_ACK[1]
$\begin{aligned} & \hline \text { KBUS_- } \\ & \text { ST1_4 } \end{aligned}$	132	0x84	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { Command_Ack } \\ & {[2]} \end{aligned}$	0x14	Internal data bus status byte 1 bit 4 Command_ACK[2]
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST1_5 } \\ & \hline \end{aligned}$	133	0x85	$\begin{aligned} & \hline \text { DST/ } \\ & \text { SRC } \end{aligned}$	Command Ack [3]	0x15	Internal data bus status byte 1 bit 5 Command_ACK[3]
$\begin{aligned} & \text { KBUS_- } \\ & \text { ST1_6 } \end{aligned}$	134	0x86	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Command_Ack [4]	0x16	Internal data bus status byte 1 bit 6 Command_ACK[4]
$\begin{aligned} & \hline \text { KBUS_- } \\ & \text { ST1_7 } \end{aligned}$	135	0x87	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Command_Ack [5]	0x17	Internal data bus status byte 1 bit 7 Command_ACK[5]
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST2_0 } \end{aligned}$	136	0x88	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	On_Target	0x08	Internal data bus status byte 2 bit 0 On_Target
KBUS-	137	0x89	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Busy	0x09	Internal data bus status byte 2 bit 1 Busy
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST2_2 } \end{aligned}$	138	0x8A	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	StandStill	0x0A	Internal data bus status byte 2 bit 2 StandStill
KBUS ST2	139	0x8B	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	On_Speed	0x0B	Internal data bus status byte 2 bit 3 On_Speed
$\begin{aligned} & \hline \text { KBUS_ } \\ & \text { ST2_4 } \end{aligned}$	140	0x8C	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Direction	0x0C	Internal data bus status byte 2 bit 4 Direction

WAGO-I/O-SYSTEM 750 I/O Modules

Appendix
Bit Field for I/O Driver

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST2_5 } \end{aligned}$	141	0x8D	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Reference_OK	0x0D	Internal data bus status byte 2 bit 5 Reference OK
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST2_6 } \\ & \hline \end{aligned}$	142	0x8E	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	PreCalc_ACK	0x0E	Internal data bus status byte 2 bit 6 Precalc_ACK
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST2_7 } \end{aligned}$	143	0x8F	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Error	0x0F	Internal data bus status byte 2 bit 7 Error
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_0 } \end{aligned}$	144	0x90	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input1	0x30	Internal data bus status byte 3 bit 0 INP1
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_1 } \end{aligned}$	145	0x91	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input2	0x31	Internal data bus status byte 3 bit 1 INP2
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_2 } \end{aligned}$	146	0x92	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input3	0x32	Internal data bus status byte 3 bit 2 INP3
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_3 } \end{aligned}$	147	0x93	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input 4	0x33	Internal data bus status byte 3 bit 3 INP4
$\begin{aligned} & \text { KBUS_- } \\ & \text { ST3_4 } \end{aligned}$	148	0x94	DST/ SRC	Input5	0x34	Internal data bus status byte 3 bit 4 INP5
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_5 } \end{aligned}$	149	0x95	$\begin{array}{\|l} \hline \text { DST/ } \\ \text { SRC } \\ \hline \end{array}$	Input6	0x35	Internal data bus status byte 3 bit 5 INP6
$\begin{aligned} & \text { KBUS_ } \\ & \text { ST3_6 } \end{aligned}$	150	0x96	$\begin{aligned} & \hline \text { DST/ } \\ & \text { SRC } \end{aligned}$	Warning	0x05	Internal bus status byte 3 bit 6
$\begin{aligned} & \text { KBUS_- } \\ & \text { ST3_7 } \end{aligned}$	151	0x97	$\begin{aligned} & \hline \text { DST/ } \\ & \text { SRC } \end{aligned}$	Reset	0x04	Internal bus status byte 3 bit 7
UserBit_0	152	0x98	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_1	153	0x99	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_2	154	0x9A	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_3	155	0x9B	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_4	156	0x9C	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_5	157	0x9D	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_6	158	0x9E	SRC	MZERO	0x02	User bit; e.g., for run program
UserBit_7	159	0x9F	SRC	MZERO	0x02	User bit; e.g., for run program
OUT1	160	0xA0	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	On_Target	0x08	Output 1
OUT2	161	0xA1	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Error	0x0F	Output 2
	162	0xA2				
	163	0xA3				
	164	0xA4				
	165	0xA5				
	166	0xA6				
	167	0xA7				

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
FILT1	168	0xA8	FILT	ZERO	0x00	Timer / Filter 1	
FILT2	169	0xA9	FILT	ZERO	0x00	Timer / Filter 2	
FILT3	170	0xAA	FILT	ZERO	0x00	Timer / Filter 3	
FILT4	171	0xAB	FILT	ZERO	0x00	Timer / Filter 4	
FILT5	172	0xAC	FILT	ZERO	0x00	Timer / Filter 5	
FILT6	173	0xAD	FILT	ZERO	0x00	Timer / Filter 6	
FILT7	174	0xAE	FILT	ZERO	0x00	Timer / Filter 7	
FILT8	175	0xAF	FILT	ZERO	0x00	Timer / Filter 8	
Enable	176	0xB0	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & 0 \end{aligned}$	0x40	Module enable. Contrary to Enable_Drive, this bit must be set to activate an operating mode.	
						0:	The module is blocked. When this bit is reset during ongoing operation, the power output stage is switched off. This bit terminates the current operating mode.
						1:	The module is enabled and can be started when the corresponding return message is also available in the status.
Stop2_N	177	0xB1	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & \text { _1 } \end{aligned}$	0x41	Drive Stop 2 inverted. With this bit, the drive can be turned off from the control. This bit must be set to activate an operating mode. The return message is transmitted via the Stop_N_ACK bit. Stop1_N and Stop2_N are always taken into account at that bit.	
						0 :	Current is being supplied to the motor, but it is at standstill. If the motor still rotates, it will be driven to stand still by the STOP acceleration. The motor can not be started up.
						1:	The drive may be started.

WAGO-I/O-SYSTEM 750 I/O Modules

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
Start	178	0xB2	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & { }_{2} 2 \end{aligned}$	0x42	Start-up of drive The drives, or frequency output, are started in the selected mode on the positive edge. If the edge is not accepted (in the Jog or Mailbox mode), an error message is generated.
						$0 \rightarrow 1: \quad \begin{aligned} & \text { The drive is started accordingly on the } \\ & \text { rising edge. }\end{aligned}$
						Single positioning Speed control The specified setpoints are accepted from the process image. Movement is made directly to the new target, even if the drive is already turning. A previously calculated movement sequence is started immediately when the PreCalc_ACK bit is set (instant setpoint switch).
						Run Program The run program is started at the Start_Instruction_Counter address in the process image. A run program that is currently running is interrupted, and the program flow is started at the new address. This allows various program parts to be transferred via the process image.
						Referencing The reference run is initiated. If the reference run is still in operation, the (new) setpoints are again accepted and calculated (same procedure as for positioning). The reference run is newly initiated.
						JogMode No effect. The drive is started in JogMode by default via Input3 (Jog_Pos) or Input4 (Jog_Neg). The inputs and outputs can be freely reconfigured. An error message is generated.
						Mailbox mode No effect in this operating mode. The command is carried out via the mailbox. If the bit is set nonetheless, neither an acknowledgment nor an error message is generated.

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
Command[1]	179	0xB3	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & -3 \end{aligned}$	0x43	Operating mode Single positioning For this operating mode, the mailbox must be disabled.	
						0 :	The Step positioning mode is not active (selected).
						1:	Operating mode Single positioning is selected.
Command[2]	180	0xB4	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & \hline \end{aligned}$	0x44	Operating mode Run program	
						0 :	The Run program mode is not active (selected).
						1:	The Run program mode has been selected.
Command[3]	181	0xB5	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & { }_{-} 5 \end{aligned}$	0x45	Reference run operating mode	
						0:	Reference run operating mode is not selected.
						1:	Reference run operating mode is selected.
Command[4]	182	0xB6	$\begin{array}{\|l} \text { DST/ } \\ \text { SRC } \end{array}$	$\begin{aligned} & \text { KBUS_CTRL1 } \\ & -6 \end{aligned}$	0x46	Jog mode. The drive can be run manually at the setup speed when the Jog mode is active. Control is implemented using Direction_Pos and Direction_Neg.	
						0 :	The Jog mode is not active (selected).
						1:	The Jog mode has been selected.
Command[5]	183	0xB7	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{array}{\|l} \text { KBUS_CTRL1 } \\ -7 \end{array}$	0x47	Mailbox mode. For this operating mode, all motion commands are given directly via the mailbox.	
						0 :	The Mailbox mode is not active (selected).
						1:	The Mailbox mode has been selected.
Enable_Drive	184	0xB8	$\begin{aligned} & \hline \text { DST/ } \\ & \text { SRC } \end{aligned}$	ONE	0x01	Enabling output stage. The output stage can be inhibited directly by deleting this bit. Contrary to Enable, this bit does not have any further effects on internal processing. The output stage is only enabled when Enable has been set and all other enable conditions are fulfilled. This bit is linked to ONE by default.	
						0 :	Output stage inhibited.
						1:	Output stage can be enabled.

WAGO-I/O-SYSTEM 750 I/O Modules

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
Reset_Quit	185	0xB9	$\begin{aligned} & \hline \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL3 } \\ & -7 \end{aligned}$	0x57	Reset acknowledgement	
						0 :	Function not defined.
						1:	The Reset signal is reset.
Direction Pos	186	0xBA	$\begin{array}{\|l} \text { DST/ } \\ \text { SRC } \end{array}$	$\begin{aligned} & \text { KBUS_CTRL3 } \\ & \text { _2 } \end{aligned}$	0x52	In reference run operating mode, this bit establishes that the reference switch is searched for in positive direction.	
						0 :	Drive not to move in a positive direction.
						1:	Drive should move in a positive direction. The drive is deactivated when the bit Direction_Neg is set at the same time.
Direction Neg	187	0xBB	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL3 } \\ & -3 \end{aligned}$	0x53	In reference run operating mode, this bit establishes that the reference switch is searched for in negative direction.	
						0 :	Drive not to move in a negative direction.
						1:	Drive should move in a negative direction. The drive is deactivated when the bit Direction_Pos is set at the same time.
Set Reference	188	0xBC	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input2	0x31	Reference input Input 2 is set to this bit in the standard configuration.	
						0:	The reference switch is not actuated.
						1:	The reference switch is actuated.
PreCalc	189	0xBD	DST/ SRC	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & -6 \end{aligned}$	0x4E	Save setpoints from Module 2.2 and, where applicable, calculate a movement sequence in advance.	
						0 :	Each setpoint that is transmitted via cyclic telegram traffic must be accepted and processed. A possibly pre-calculated movement process will be discarded. A movement sequence can be calculated and started using Start.
						1:	The setpoints from the cyclic telegram traffic are ignored and the setpoint saved for the $0 \rightarrow 1$ edge used instead. If the starting speed is zero, a movement sequence will be calculated in advance using this setpoint; this sequence can then be started with the normal delay using Start.

Designation	Bit number		Type	Default		Description	
	Dec.	Hex.		Target/Source	Bit no.		
SetupSpeed Active	190	0xBE	$\begin{array}{\|l} \text { DST/ } \\ \text { SRC } \end{array}$	MZERO	0x02	Setup mode selected. When the bit SetupSpeed_Active_ACK is set the drive speed is limited to the defined setup speed.	
						0 :	Setup mode not selected.
						1:	Setup mode selected.
Error_Quit	191	0xBF	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & -7 \end{aligned}$	0x4F	Acknowledge error. All errors that are present are acknowledged at the rising edge from 0 to 1 . After acknowledgement, the error switches to 0 , or a new error is present:	
$\begin{aligned} & \text { LimitSwitch_ } \\ & \text { Pos } \end{aligned}$	192	0xC0	SRC	Input5	0x34	Limit switch input on movement in positive direction. A direct input exists for this function.	
						0 :	The positive direction limit switch is not actuated.
						1 :	The positive direction limit switch is actuated. The drive is ramped down.
LimitSwitch Neg	193	0 xC 1	SRC	Input6	0x35	Limit switch input on movement in negative direction. A direct input exists for this function.	
						0 :	The positive direction limit switch is not actuated.
						$1:$	The positive direction limit switch is actuated. The drive is ramped down.
Stop1_N	194	0xC2	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	Input1	0x30	Drive Stop 1 inverted. This bit is linked to input 1 of the terminal. The return message is transmitted via Stop_N bit. Stop1_N and Stop2_N are always taken into account at that bit.	
						0 :	Current is being supplied to the motor, but it is at standstill. If the motor still rotates, it will be driven to stand still by the STOP acceleration. The motor can not be started up.
						1:	The drive may be started.
Brake Manual	195	0xC3	$\begin{array}{\|l} \text { DST/ } \\ \text { SRC } \end{array}$	MZERO	0x02		al actuation of brake

Designation	Bit number		Type	Default		Description		
	Dec.	Hex.		Target/Source	Bit no.			
Freq_Range_ Sel_0	196	0xC4	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & -0 \end{aligned}$	0x48	Configuration of velocity prescaler. The prescaler Frq_Prescaler is set for speed using these two bits when the module is to be operated without configuration via the mailbox. These values are accepted only when Enable is set to 0 .		
Freq_Range_ Sel_1	197	0xC5	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & -1 \end{aligned}$	0x49			
						Freq Range Sel 0	Freq Range Sel_1	
						0	0	The Freq_Prescaler prescaler is loaded with the parameter Freq_Div from the current configuration data set (*).
						0	1	Freq_Prescaler $=80$ Fmax $=25 \mathrm{kHz}$
						1	0	Freq_Prescaler $=20$ Fmax $=100 \mathrm{kHz}$
						1	1	Freq_Prescaler $=4$ Fmax $=500 \mathrm{kHz}$
						(*) If the configur value of Freq_Pre Freq_Ran Freq_Ran		Freq Div in the et has been assigne a escaler will be set to $0(\mathrm{Fmax}=10 \mathrm{kHz})$ for $=0$ and $=0$.

Designation	Bit number		Type	Default		Description		
	Dec.	Hex.		Target/Source	Bit no.			
Acc_Range_ Sel_0	198	0xC6	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & 0 \end{aligned}$	0x48	Configuration factor Acceleration. These two bits are used to set the ACC_Multiplier factor for acceleration. These values are accepted only when Enable is set to 0 .		
Acc_Range_ Sel_1	199	0xC7	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL2 } \\ & \text { _1 } \end{aligned}$	0x49			
						Acc Rang Sel_0	Acc Range Sel_1	
						0	0	The factor Acc_Multiplier is loaded with the parameter Acc_Fact from the current configuration data set (*).
						0	1	$\begin{aligned} & \text { Acc_Multiplier }=80 \\ & \mathrm{~T}=\overline{7} 60 \mathrm{~ms} \end{aligned}$
						1	0	$\begin{aligned} & \text { Acc_Multiplier }=800 \\ & \mathrm{~T}=76 \mathrm{~ms} \end{aligned}$
						1	1	$\begin{aligned} & \text { Acc_Multiplier }=8000 \\ & \mathrm{~T}=\overline{7} .6 \mathrm{~ms} \end{aligned}$
						(*) If the parameter Acc_Fact in the configuration data set has been assigned a value of zero, the factor is set to Acc_Multiplier $=8(T=7.6 \mathrm{~s})$ for Acc_Range_Sel_0 $=0$ and Acc_Range_Sel_1 $=0$.		
Set_Actual POS	200	0xC8	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	$\begin{aligned} & \text { KBUS_CTRL3 } \\ & -0 \end{aligned}$	0x50	The actual value is set to the reference position (configuration parameter Reference_Offset) on a rising edge from the bit Set_Actual_POS. This function can not be performed while a positioning run is ongoing.		
	201	0xC9						
Jog_Pos	202	0xCA	$\begin{aligned} & \text { DST/S } \\ & \text { RC } \end{aligned}$	Input3	0x32	Move in positive direction. This bit is required for the JogMode. The drive is controlled via these bits, after the selection of the corresponding operating mode.		
						0: \quad Drive not to move in a positive direction.		
						1:	Drive should move in a positive direction. The drive is deactivated when the bit Jog_Neg is set at the same time.	

WAGO-I/O-SYSTEM 750 I/O Modules

Designation	Bit number		Type	Default		Description

Designation	Bit number		Type	Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
TRACE_TRI GGER	222	0xDE	$\begin{array}{\|l} \text { DST/ } \\ \text { SRC } \end{array}$	Busy	0x09	A trace is started with a positive edge when Trace_Armed is set. The Trace_Varl/2 variables given in the configuration are recorded using the time frame specified in Trace_MsecCycleTime.
Trace_Armed	223	0xDF	$\begin{aligned} & \text { DST/ } \\ & \text { SRC } \end{aligned}$	MONE	0x03	Trace activation
	224	0xE0				
	225	0xE1				
	226	0xE2				
	227	0xE3				
	228	0xE4				
	229	0xE5				
	230	0xE6				
	231	0xE7				
	232	0xE8				
	233	0xE9				
	234	0xEA				
	235	0xEB				
	236	0xEC				
	237	0xED				
	238	0xEE				
	239	0xEF				
	240	0xF0	INT			
	241	0xF1	INT			
	242	0xF2	INT			
	243	0xF3	INT			
	244	0xF4	INT			
	245	0xF5	INT			
	246	0xF6	INT			
	247	0xF7	INT			
	248	0xF8	INT			
	249	0xF9	INT			
	250	0xFA	INT			
	251	0xFB	INT			
	252	0xFC	INT			
	253	0xFD	INT			

Designation	Bit number			Default		Description
	Dec.	Hex.		Target/Source	Bit no.	
	254	$0 x F E$	INT			
	255	$0 x F F$	INT			

4.6 Configuration Variables

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
User_Conf_ld	0	0x00	UINT16	0	0 ... 50000	The dataset number can be freely assigned by the user. Numbers above 50000 are reserved.
ConfVersion	2	0x02	UINT8	4	0 ... 254	Configuration version number. This number identifies the structure of the dataset. (Order and length of the data.) If it becomes necessary to expand the dataset within the framework of future expansions, the number will be adjusted accordingly. The software can only read a dataset that is known. Other dataset numbers are rejected.
Application Selector	3	0x03	UINT8	1	1	Switching of the application The appropriate process image is activated when a new application is selected.
						0: Reserved
						1: Positioning controller
Freq_Div	4	0x04	UINT16	40	4 ... 32767	Sets the prescaler for maximum speed, only valid when the bits Freq_Range_Sel_0 and Freq_Range_Sel_1 are zero.
Acc_Fact	6	0x06	UINT16	1000	1... 32767	Sets the factor for maximum acceleration, only valid if bits Acc_Range_Sel_0 and Acc_Range_Sel_1 are zero.
Current	14	0x0E	UINT8	50	$0 \ldots 50$	Motor rated current in [0.1 A]
Current_Ratio StandStill	15	0x0F	UINT8	33	0 ... 150	Current factor at standstill in [\%], based on motor rated current "Current". A value of " 0 " blocks the modulation.
Current_Ratio RampUp	16	0x10	UINT8	100	0 ... 150	Current factor for ramp-down in [\%], based on motor rated current "Current". A value of " 0 " blocks the modulation.
Current_Ratio Drive	17	0x11	UINT8	50	0 ... 150	Current factor for drive in [\%], based on motor rated current "Current". A value of "0" blocks the modulation.
Current_Ratio RampDown	18	0x12	UINT8	100	0 ... 150	Current factor for ramp-down in [\%], based on motor rated current "Current". A value of " 0 " blocks the modulation.

WAGO-IIO-SYSTEM 750 I/O Modules

Configuration variable	Address		Data type:	Default:	Range:	Description	
	Dec.	Hex.					
HwSwConfig	19	0x13	UINT8	0		Bit $0 \ldots$ 1: reserved	
						Bit 2: Drive_Direction (Direction of rotation inversion)	
						0 :	Output signal is processed directly
						1 :	Output signal: rotary direction is inverted
						Bits $3 \ldots .6$: reserved	
						Bit 7: Program_Autostart (Move program Autostart - Normal mode)	
						0 :	Move program activated only via Move program or Mailbox mode.
						1 :	Move program activated immediately after startup, see description.
Pos_Mult	20	0x14	UINT16	1	1 ... 65535	Scaling factors for positions	
Pos_Div	22	0x16	UINT16	1	1 ... 65535		
Enc_Mult	24	0x18	UINT16	1	1 ... 65535	Reserved	
Enc_Div	26	0x1A	UINT16	1	1 ... 65535		
Speed_Mult	28	0x1C	UINT16	1	1 ... 65535	Scaling factors for speeds	
Speed_Div	30	0x1E	UINT16	1	1 ... 65535	Scaling factors for speeds	
Acc_Mult	32	0x20	UINT16	1	1 ... 65535	Scaling factors for acceleration	
Acc_Div	34	0x22	UINT16	1	1 ... 65535	Scaling factors for acceleration	
Reserved_36	36	0x24	UINT16	0		Reserved	
Reserved_38	38	0x26	UINT16	0		Reserved	
Speed	40	0x28	INT16	3000	$1 . .25000$	Default speed	
Speed_Limit	42	0x2A	INT16	25000	1 ... 25000	Default maximum speed. When exceeding this speed, the drive is turned off.	
SetupSpeed	44	0x2C	INT16	3000	$1 . .25000$	Default setup speed. When the value 0 is specified, a 1 value is automatically accepted.	
Acceleration Stop_Fast	46	0x2E	INT16	30000	0 ... 32767	Default acceleration for STOP operation. If this parameter is set to 0 , the current acceleration speed is used.	
Acceleration RampUp	48	0x30	INT16	1000	0 ... 32767	Default acceleration in acceleration phase	
Acceleration RampDown	50	0x32	INT16	1000	0 ... 32767	Default acceleration in delay phase	

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Acceleration RampUp_Param	52	0x34	INT32	300	$\begin{array}{\|l} 0 \\ \ldots \\ \ldots \end{array}$	Default acceleration time or acceleration path Default value for Acc_ParamUp for acceleration No acceleration modification: time constant for acceleration increase with linear or $\sin ^{\wedge} 2$. Constant acceleration modification: acceleration time Constant acceleration path modification: acceleration path Parameter 1-3: value 1.. 16777215
Acceleration RampDown Param	56	0x38	INT32	300	$\begin{array}{\|l} 0 \\ \ldots \\ \hline \end{array}$	Default deceleration time or deceleration path Default value for Acc_ParamDown for deceleration No deceleration modification: time constant for deceleration increase with linear or $\sin ^{\wedge} 2$. Constant deceleration time modification: deceleration time Constant deceleration path modification: deceleration path Parameter 1-3: value 1.. 16777215

WAGO-I/O-SYSTEM 750
I/O Modules

Configuration variable	Address		Data type:	Default:	Range:	Description	
	Dec.	Hex.					
Acceleration_ Modes	60	0x3C	UINT8	0		Bit 0 ... 1: AccType (acceleration type)	
						0 :	constant acceleration
						1 :	linear rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
						2 :	Sin^{2} rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
						3:	Reserved
							2 ... 3: AccParam celeration parameter)
						0 :	no modification
						1 :	Acceleration_RampUp_Param interpreted as the acceleration period
						2 :	Acceleration_RampUp_Param interpreted as the acceleration path
						3:	Reserved
							4 ... 5: DecType celeration type)
						0 :	constant acceleration
						1:	linear rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
						2 :	Sin^{2} rise in acceleration; the period for acceleration increase is Acceleration_RampUp_Param
						3:	Reserved
							6 .. 7: DecParam celration parameter)
						0 :	no modification
						1:	Acceleration_RampUp_Param interpreted as the acceleration period
						2 :	Acceleration_RampUp_Param interpreted as the acceleration path
						3:	Reserved

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Current_Ratio Stop	61	0x3D	UINT8	150	0 ... 150	Current factor for STOP mode in [\%], based on motor rated current "Current"
Setup Acceleration	62	0x3E	UINT16	1000	0 ... 32767	Acceleration for JOG operation
Rotary_Axis_ Period	64	0x40	INT32	0	$\begin{aligned} & 0 \\ & \ldots . .16777216 \end{aligned}$	Sets period P for a round axis, Zero is entered for a linear axis.
Drive_Range_ Neg	68	0x44	INT32	8388607	$\begin{array}{\|l\|} \hline-8388607 \\ \ldots 8388607 \end{array}$	Permissible travel range in negative direction
Drive_Range_ Pos	72	0x48	INT32	8388607	$\begin{aligned} & +0 \times 7 \mathrm{fffffff} \\ & . . .0 x 7 \mathrm{fffffff} \end{aligned}$	Permissible travel range in positive direction
Reserved_76	76	0x4C	UINT32	0		Reserved
Reserved_80	80	0x50	UINT32	0		Reserved
PWM_Period	84	0x54	UINT32	0	$\begin{array}{\|l} 0 \\ \ldots . .42949672 \\ 95 \end{array}$	Parameter has no meaning
Camshaft_Ch9_ Start	88	0x58	INT32	0	± 8388607	Camshaft channel 9 position, starting edge in path increments
$\begin{aligned} & \text { Camshaft_Ch9_ } \\ & \text { Period } \end{aligned}$	92	0x5C	INT32	100	1 ... 8388607	Camshaft channel 9 period in path increments
Camshaft_Ch9_ Pulsewidth	96	0x60	INT32	50	0 ... 8388607	Camshaft channel 9 pulse width in path increments
Braketime_Turn_ On	100	0x64	UINT32	0	0 ... 8388607	Brake make time in [ms]
Braketime_Turn_ Off	104	0x68	UINT32	0	$0 \ldots 8388607$	Brake breaktime in [ms]
Reference_Offset	108	0x6C	UINT32	0	± 8388607	Reference switch position

WAGO-I/O-SYSTEM 750
I/O Modules

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Reference_Mode	112	0x70	UINT8	0		Mode for reference run at the start of a reference run via the cyclic process image (for starting a reference run using the move command START_REFERENCING, call parameters are used, but NOT the following configuration bits)
						Bit 0:
						0: Reference run to reference switch
						1: Reference run to limit switch
						Bit 1:
						0: $\quad \begin{aligned} & \text { Reference run to negative end of a } \\ & \text { reference switch }\end{aligned}$ reference switch
						1: Reference run to positive end of a reference switch
						Bit 2 .. 7: reserved
ErrorNotification Mode	113	0x71	UINT8	0x06		Bit 0: SystemFlagEnable: This parameter bit affects all error messages.
						$0:$ $\begin{array}{l}\text { Errors are not reported via internal } \\ \text { bus status bit S0.6 }\end{array}$
						1: Errors are reported via internal bus status bit S0.6
						Bit 1: OverTemperature: Overtemperature warning threshold (parameter 406) is analyzed as an error message
						0: $\quad \begin{aligned} & \text { Overtemperature is not reported as } \\ & \text { an error }\end{aligned}$
						1: Overtemperature is reported as an error
						Bit 2: MotorOff: Motor connection error message
						0 : Faulty motor connection is not reported as an error
						1: Faulty motor connection is reported as an error
						Bits $3 \ldots$ 7: reserved
Reserved_114	114	0x72	INT16	0		Reserved

Configuration variable	Address		Data type:	Default:	Range:	Description	
	Dec.	Hex.					
WarningNotificat ion_Mode	116	0x74	INT 8	0x18		Bit 0: SystemFlagEnable: This parameter bit affects all warning messages	
						0 :	Warning messages are not reported via internal bus status bit S0.6
						1 :	Warning messages are reported via internal bus status bit S0.6
						Bit 1: OverTemperature: Overtemperature warning threshold (parameter 406) is analyzed.	
						0 :	Overtemperature is not reported as a warning.
						$1:$	Overtemperature is reported as a warning.
						Bit 2 .. 7: reserved	
Reserved_117	117	0x75	INT8	0		Reserved	
Reserved_118	118	0x76	INT16	0	0 ... 32767	Reserved	
Reserved_120	120	0x78	INT16	0	0 ... 32767	Reserved	
Reserved_122	122	0x7A	INT16	0	0 ... 32767	Reserved	
Reserved_124	124	0x7C	INT32	0		Reserved	
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST1_0 } \end{aligned}$	128	0x80	UINT8	0x10	0 ... 255	Source for linkable bit 0x80	
$\begin{aligned} & \text { Ptr_KBUS_}_{-} \\ & \text {ST1_1 } \end{aligned}$	129	0x81	UINT8	0x11	0 ... 255	Source for linkable bit 0×81	
$\begin{aligned} & \operatorname{Ptr}_{-} \mathrm{KBUS}_{-} \\ & \mathrm{ST1}_{1} 2 \end{aligned}$	130	0x82	UINT8	0x12	0 ... 255	Source for linkable bit 0x82	
$\begin{aligned} & \mathrm{Ptr}_{-} \mathrm{KBUS} \\ & \text { ST1_3 } \end{aligned}$	131	0x83	UINT8	0x13	0 ... 255	Source for linkable bit 0x83	
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST1_4 } \end{aligned}$	132	0x84	UINT8	0x14	0 ... 255	Source for linkable bit 0x84	
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST1_5 } \end{aligned}$	133	0x85	UINT8	0x15	0 ... 255	Source for linkable bit 0x85	
$\begin{aligned} & \text { Ptr_KBUS_ }^{\text {ST1_6 }} \end{aligned}$	134	0x86	UINT8	0x16	0 ... 255	Source for linkable bit 0x86	
$\begin{aligned} & \text { Ptr_KBUS_ }^{\text {ST1_7 }} \end{aligned}$	135	0x87	UINT8	0x17	0 ... 255	Source for linkable bit 0x87	
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST2_0 } \end{aligned}$	136	0x88	UINT8	0x08	0 ... 255	Source for linkable bit 0×88	
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST2_1 } \end{aligned}$	137	0x89	UINT8	0x09	$0 \ldots 255$	Source for linkable bit 0×89	

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST2_2 } \end{aligned}$	138	0x8A	UINT8	0x0A	0 ... 255	Source of linkable bit 0x8A
$\begin{aligned} & \operatorname{Ptr}_{-} \mathrm{KBUS}_{-} \\ & \mathrm{ST}_{2} 3 \end{aligned}$	139	0x8B	UINT8	0x0B	0 ... 255	Source of linkable bit 0x8B
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST2_4 }^{2} \end{aligned}$	140	0x8C	UINT8	0x0C	0 ... 255	Source of linkable bit 0x8C
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST2_5 } \end{aligned}$	141	0x8D	UINT8	0x0D	0 ... 255	Source of linkable bit 0x8D
$\begin{aligned} & \text { Ptr_KBUS_ }_{-} \\ & \text {ST2_6 }^{2} \end{aligned}$	142	0x8E	UINT8	0x0E	0 ... 255	Source of linkable bit 0x8E
$\begin{aligned} & \operatorname{Ptr}_{2} K B U S- \\ & \mathrm{ST}_{2}{ }_{2} 7 \end{aligned}$	143	0x8F	UINT8	0x0F	0 ... 255	Source of linkable bit 0x8F
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_0 } \end{aligned}$	144	0x90	UINT8	0x30	0 ... 255	Source for linkable bit 0x90
$\begin{aligned} & \mathrm{Ptr}_{1} \mathrm{KBUS} \\ & \mathrm{ST} 3 _1 \end{aligned}$	145	0x91	UINT8	0x31	0 ... 255	Source for linkable bit 0x91
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_2 } \end{aligned}$	146	0x92	UINT8	0x32	0 ... 255	Source for linkable bit 0x92
$\begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_3 } \end{aligned}$	147	0x93	UINT8	0x33	0 ... 255	Source for linkable bit 0x93
$\begin{aligned} & \text { Ptr_KBUS_}_{-} \\ & \text {ST3_4 } \end{aligned}$	148	0x94	UINT8	0x34	0 ... 255	Source for linkable bit 0x94
$\left\lvert\, \begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_5 } \end{aligned}\right.$	149	0x95	UINT8	0x35	0 ... 255	Source for linkable bit 0x95
$\left\lvert\, \begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_6 } \end{aligned}\right.$	150	0x96	UINT8	0x05	0 ... 255	Source for linkable bit 0x96
$\left\lvert\, \begin{aligned} & \text { Ptr_KBUS_ } \\ & \text { ST3_7 } \end{aligned}\right.$	151	0x97	UINT8	0x04	0 ... 255	Source for linkable bit 0x97
Ptr_UserBit_0	152	0x98	MZERO	0x02	0 ... 1	User bits; e.g., for run program
Ptr_UserBit_1	153	0x99	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_UserBit_2	154	0x9A	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_UserBit_3	155	0x9B	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_UserBit_4	156	0x9C	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_UserBit_5	157	0x9D	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_UserBit_6	158	0x9E	MZERO	0x02	0 ... 1	User bits; e.g., for run program
Ptr_UserBit_7	159	0x9F	MZERO	0x02	$0 \ldots 1$	User bits; e.g., for run program
Ptr_OUT1	160	0xA0	UINT8	0x08	0 ... 255	Source for linkable bit 0xA0
Ptr_OUT2	161	0xA1	UINT8	0x0F	0 ... 255	Source for linkable bit 0xA1
Reserved_162	162	0xA2	UINT8	0x00	0 ... 255	Source for linkable bit 0xA2
Reserved_163	163	0xA3	UINT8	0x00	0 ... 255	Source for linkable bit 0xA3

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Reserved_164	164	0xA4	UINT8	0x00	0 ... 255	Source for linkable bit 0xA4
Reserved_165	165	0xA5	UINT8	0x00	0 ... 255	Source for linkable bit 0xA5
Reserved_166	166	0xA6	UINT8	0x00	0 ... 255	Source for linkable bit 0xA6
Reserved_167	167	0xA7	UINT8	0x00	0 ... 255	Source for linkable bit 0xA7
Ptr_FILT1	168	0xA8	UINT8	0x00	0 ... 255	Source for linkable bit 0xA8
Ptr_FILT2	169	0xA9	UINT8	0x00	0 ... 255	Source for linkable bit 0xA9
Ptr_FILT3	170	0xAA	UINT8	0x00	0 ... 255	Source of linkable bit 0xAA
Ptr_FILT4	171	0xAB	UINT8	0x00	0 ... 255	Source of linkable bit 0xAB
Ptr_FILT5	172	0xAC	UINT8	0x00	0 ... 255	Source of linkable bit 0xAC
Ptr_FILT6	173	0xAD	UINT8	0x00	0 ... 255	Source of linkable bit 0xAD
Ptr_FILT7	174	0xAE	UINT8	0x00	0 ... 255	Source of linkable bit 0xAE
Ptr_FILT8	175	0xAF	UINT8	0x00	0 ... 255	Source of linkable bit 0xAF
Ptr_Enable	176	0xB0	UINT8	0x40	0 ... 255	Source for linkable bit 0xB0
Ptr_Stop2_N	177	0xB1	UINT8	0x41	0 ... 255	Source for linkable bit 0xB1
Ptr_Start	178	0xB2	UINT8	0x42	0 ... 255	Source for linkable bit 0xB2
Ptr_Command[1]	179	0xB3	UINT8	0x43	0 ... 255	Source for linkable bit 0xB3
Ptr_Command[2]	180	0xB4	UINT8	0x44	0 ... 255	Source for linkable bit 0xB4
Ptr_Command[3]	181	0xB5	UINT8	0x45	0 ... 255	Source for linkable bit 0xB5
Ptr_Command[4]	182	0xB6	UINT8	0x46	0 ... 255	Source for linkable bit 0xB6
Ptr_Command[5]	183	0xB7	UINT8	0x47	0 ... 255	Source for linkable bit 0xB7
Ptr_Enable_ Drive	184	0xB8	UINT8	0x01	0 ... 255	Source for linkable bit 0xB8
Ptr_Reset_ Quit	185	0xB9	UINT8	0x57	0 ... 255	Source for linkable bit 0xB9
$\begin{aligned} & \text { Ptr_Direction_ } \\ & \text { Pos } \end{aligned}$	186	0xBA	UINT8	0x52	0 ... 255	Source of linkable bit 0xBA
Ptr_Direction_ Neg	187	0xBB	UINT8	0x53	0 ... 255	Source for linkable bit $0 \times \mathrm{xBB}$
Ptr_Set Reference	188	0xBC	UINT8	0x31	0 ... 255	Source of linkable bit 0xBC
Ptr_PreCalc	189	0xBD	UINT8	0x4E	0 ... 255	Source of linkable bit 0xBD
Ptr_SetupSpeed_ Active	190	0xBE	UINT8	0x02	0 ... 255	Source of linkable bit $0 \times \mathrm{BE}$
Ptr_Error_Quit	191	0xBF	UINT8	0x4F	0 ... 255	Source of linkable bit 0xBF
Ptr_ LimitSwitch_ Pos	192	0xC0	UINT8	0x34	0 ... 255	Source for linkable bit 0xC0

WAGO-I/O-SYSTEM 750 I/O Modules

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Ptr LimitSwitch Neg	193	0 xCl	UINT8	0x35	0 ... 255	Source for linkable bit 0xC1
Ptr_Stop1_N	194	0xC2	UINT8	0x30	0 ... 255	Source for linkable bit 0xC2
Break_Manual	195	0xC3	UINT8	0x02	0 ... 255	Source for linkable bit 0xC3
Ptr_Freq_Range_ Sel_0	196	0xC4	UINT8	0x48	0 ... 255	Source for linkable bit 0xC4
Ptr_Freq_Range_ Sel_1	197	0xC5	UINT8	0x49	0 ... 255	Source for linkable bit 0xC5
Ptr_Acc_Range_ Sel 0	198	0xC6	UINT8	0x4A	0 ... 255	Source for linkable bit 0xC6
Ptr_Acc_Range_ Sel 1	199	0xC7	UINT8	0x4B	0 ... 255	Source for linkable bit 0xC7
Ptr_Set_Actual_ POS	200	0xC8	UINT8	0x50	0 ... 255	Source for linkable bit 0xC8
Reserved_201	201	0xC9	UINT8	0x00	0 ... 255	Source for linkable bit 0xC9
Ptr_Jog_Pos	202	0xCA	UINT8	0x32	0 ... 255	Source of linkable bit 0xCA
Ptr_Jog_Neg	203	0xCB	UINT8	0x33	0 ... 255	Source of linkable bit 0xCB
Reserved_204	204	0xCC	UINT8	0x00	0 ... 255	Source of linkable bit 0xCC
Reserved_205	205	0xCD	UINT8	0x00	0 ... 255	Source of linkable bit 0xCD
Reserved_206	206	0xCE	UINT8	0x00	0 ... 255	Source of linkable bit 0xCE
Reserved_207	207	0xCF	UINT8	0x00	0 ... 255	Source of linkable bit 0xCF
Ptr_LED_B	208	0xD0	UINT8	0x09	0 ... 255	Source of linkable bit 0xD0
Ptr_LED_C	209	0xD1	UINT8	0x1B	0 ... 255	Source of linkable bit 0xD1
Ptr_LED_D	210	0xD2	UINT8	0x11	0 ... 255	Source of linkable bit 0xD2
Ptr_LED_A	211	0xD3	UINT8	0x19	0 ... 255	Source of linkable bit 0xD3
Ptr_LED_E	212	0xD4	UINT8	0x26	0 ... 255	Source of linkable bit 0xD4
Ptr_LED_F	213	0xD5	UINT8	0x27	0 ... 255	Source of linkable bit 0xD5
Reserved_214	214	0xD6	UINT8	0x00	0 ... 255	Source of linkable bit 0xD6
Reserved_215	215	0xD7	UINT8	0x00	0 ... 255	Source of linkable bit 0xD7
Reserved_216	216	0xD8	UINT8	0x00	0 ... 255	Source of linkable bit 0xD8
Reserved_217	217	0xD9	UINT8	0x00	0 ... 255	Source of linkable bit 0xD9
Reserved_218	218	0xDA	UINT8	0x00	0 ... 255	Source of linkable bit 0xDA
Reserved_219	219	0xDB	UINT8	0x00	0 ... 255	Source of linkable bit 0xDB
Reserved_220	220	0xDC	UINT8	0x00	0 ... 255	Source of linkable bit 0xDC
Reserved_221	221	0xDD	UINT8	0x00	0 ... 255	Source of linkable bit 0xDD
Ptr_Trace_ Trigger	222	0xDE	UINT8	0x09	0 ... 255	Source of linkable bit 0xDE

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Ptr_Trace Armed	223	0xDF	UINT8	0x03	0 ... 255	Source of linkable bit 0xDF
Filter1_Function	224	0xE0	UINT8	0	$0 . . .11$	Function of filter:
						0 : No filtering
						1: Inversion
						2: Start edge detection
						3: Low pass
						4: Pulse expansion
						5: Monoflop
						6: Delay
						7: Arithmetic
						8: Counter, incrementing
						9: Counter, incrementing to Zero
						10: Counter, decrementing
						11: Counter, decrementing to Zero
Filter2_Function	225	0xE1	UINT8	0		
Filter3_Function	226	0xE2	UINT8	0		
Filter4_Function	227	0xE3	UINT8	0		
Filter5_Function	228	0xE4	UINT8	0		
Filter6_Function	229	0xE5	UINT8	0		
Filter7_Function	230	0xE6	UINT8	0		
Filter8_Function	231	0xE7	UINT8	0		
Filter1_Time	232	0xE8	UINT32	0	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Filter time constant in [ms]
Filter2_Time	236	0xEC	UINT32	0		
Filter3_Time	240	0xF0	UINT32	0		
Filter4_Time	244	0xF4	UINT32	0		
Filter5_Time	248	0xF8	UINT32	0		
Filter6_Time	252	0xFC	UINT32	0		
Filter7_Time	256	0x100	UINT32	0		
Filter8_Time	260	0x104	UINT32	0		
TraceVar1	264	0x108	UINT32	1	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Variable number 1 for trace memory
TraceVar2	268	0x10C	UINT32	2	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Variable number 2 for trace memory
TraceMsecCycle Time	272	0x110	UINT32	1	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Cycle time for recording the variables given in TraceVar1/2 in [ms]

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
IdentNumber	276	0x114	UINT32	750672	0 .99999999	WAGO 8 digit ID number (numerical value)
Reserved_280	280	0x118	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_284	284	0x11C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_288	288	0x120	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_292	292	0x124	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_296	296	0x128	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_300	300	0x12C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_304	304	0x130	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_308	308	0x134	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_312	312	0x138	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_316	316	0x13C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_320	320	0x140	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_324	324	0x144	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_328	328	0x148	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_332	332	0x14C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_336	336	0x150	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_340	340	0x154	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_344	344	0x158	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_348	348	0x15C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_352	352	0x160	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_356	356	0x164	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved

Configuration variable	Address		Data type:	Default:	Range:	Description	
	Dec.	Hex.					
Reserved_360	360	0x168	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved	
Reserved_364	364	0x16C	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved	
Reserved_368	368	0x170	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved	
Reserved_372	372	0x174	UINT32	0	$\begin{aligned} & 0 \\ & \hline \ldots 16777215 \end{aligned}$	Reserved	
Reserved_376	376	0x178	UINT32	0	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Reserved	
MotorAlign	380	0x17C	UINT8	0	0 ... 255	Parameter has no meaning	
Fan_Config	381	0x17D	UINT8	0		Bit 0: Configuration fan	
						0 :	Normal operation: temperature during output stage $>60^{\circ} \mathrm{C}$, overtravel time $=10 \mathrm{~min}$.
						1:	Fan disabled
						2:	Fan always on
Reserved_382	382	0x17E	UINT16	0	1... 65535	Reserved	
Currrent_Ctrl_H ysteresis	384	0x180	UINT16	50	0 ... 5000	Current controller hysteresis The current controller hysteresis has the unit [mA]; the range is $0 \ldots 5000$. The parameter defines the width of the current band.	
Reserved_386	386	0x186	UINT16	0	1 ... 65535	Reserved	
$\begin{aligned} & \text { Currrent_Ctrl_T } \\ & \text { ZMin } \end{aligned}$	388	0x184	UINT16	2	1 ... 65535	Current three-point controller only: Waiting time at state zero before switching band in [us * 4]	
Reserved_390	390	0x186	UINT16	0	1... 65535	Reserved	
$\begin{aligned} & \text { Currrent_Ctrl_T } \\ & \text { ZMax } \end{aligned}$	392	0x188	UINT16	30	1 ... 65535	Current three-point controller only: Maximum time from state zero in [us * 4], subsequent forced band switching	
Current_Pass2	394	0x18A	UINT16	0xC0F0	$1 \ldots 65535$	Password for current controller parameters. Password = Currrent_Ctrl_Hysteresis XOR Currrent_Ctrl_TZMin XOR Currrent_Ctrl_TZMax XOR Current_Ctrl_Type XOR 0xC0DE. If the password is incorrect, the error message CONFIG_WRONGPASSWORD (1162) is generated.	

WAGO-I/O-SYSTEM 750 I/O Modules

Configuration variable	Address		Data			
	Dec.	Hex.	Default:	Range:	Description	
Current_Ctrl_Ty pe	396	0x18C	UINT16	0		

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
SpeedMeasureTi meoutA	432	0x1B0	UINT32	100	0 ... 65535	Parameter has no meaning
SpeedMeasureTi meV	436	0x1B4	UINT32	3	0 ... 65535	Parameter has no meaning
SpeedMeasureTi meoutV	440	0x1B8	UINT32	0	0 ... 65535	Parameter has no meaning
Controller_v_Kp	444	0x1BC	UINT32	32000	$\begin{aligned} & 0 \ldots \\ & 0 \times 7 \mathrm{fffffff} \end{aligned}$	Parameter has no meaning
Controller_v_ITi	448	0x1C0	UINT32	16000	$\begin{aligned} & 0 \ldots \\ & 0 \times 7 \mathrm{fffffff} \end{aligned}$	Parameter has no meaning
Controller_s_Kp	452	0x1C4	UINT32	2000	$\begin{aligned} & 0 \ldots \\ & 0 \times 7 \mathrm{fffffff} \end{aligned}$	Parameter has no meaning
Controller_s_ITi	456	0x1C8	UINT32	0	$\begin{aligned} & 0 \ldots \\ & 0 \times 7 f f f f f f f \end{aligned}$	Parameter has no meaning
Controller_s_Td	460	0x1CC	UINT32	0	$\begin{aligned} & 0 \ldots 1677721 \\ & 5 \end{aligned}$	Parameter has no meaning
Controller_s_Tdd i	464	0x1D0	UINT32	0	0 ... 0xFFFF	Parameter has no meaning
Reserved_468	468	0x1D4	UINT16	0	0 ... 65535	Reserved
TargetWindowSp eed	470	0x1D6	UINT16	2	$0 \ldots 0 x 7 \mathrm{fff}$	Target window for speed control. If the final speed after the termination of the acceleration ramp in speed control mode differs from the target speed by less than the parameterized target window, the bit On_Target is set.
TargetWindowPo sition	472	0x1D8	UINT32	0	$0 \text {... }$ 0xffffffff	Target window for position control. If the position after the termination of movement control in position control mode differs from the target position by less than the parameterized target window, the bit On_Target and the bits linked to it are set.
Reserved_476	476	0x1DC	UINT32	0	$\begin{aligned} & 0 \\ & \ldots . .16777215 \end{aligned}$	Reserved
Speed_Filter	480	0x1E0	UINT16	16384	0... 0xFFFF	Parameter has no meaning
TrackingError_R ange_Speed	482	0x1E2	UINT16	100	$0 \ldots 0 x 7 \mathrm{FFF}$	Parameter has no meaning
TrackingError_R ange_Position	484	0x1E4	UINT32	100	$0 \text {... }$ 0xffffffff	Parameter has no meaning
TrackingError_D elay	488	0x1E8	UINT32	100	$0 \text {... }$ 0xffffffff	Parameter has no meaning
ControllerMinLi mit ${ }^{*}$	492	0x1EC	UINT16	8	1... 0x7FF	System input limition for position regulator (internally multiplied by factor 16)

WAGO-I/O-SYSTEM 750 I/O Modules

Configuration variable	Address		Data type:	Default:	Range:	Description
	Dec.	Hex.				
Reserved_496	496	0x1F0	UINT32	0	$\left\lvert\, \begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}\right.$	Reserved
Reserved_500	500	0x1F4	UINT32	0	$\begin{array}{\|l} 0 \\ \ldots 16777215 \end{array}$	Reserved
Reserved_504	504	0x1F8	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved
Reserved_508	508	0x1FC	UINT32	0	$\begin{aligned} & 0 \\ & \ldots 16777215 \end{aligned}$	Reserved

${ }^{*}$) from version v3504

4.7 Internal State Variables

Index		Variable	Value	
Dec.	Hex.			
0	0x00	Time since program start	[ms]	
1	0x01	Actual position (measured value)	[user unit]	
2	0x02	Actual output frequency	[user unit]	
3	0x03	Number of state variables/ARM-CPU only, without TMS variables		
4	0x04	0		
5	0x05	0		
6	0x06	0		
7	0x07	0		
8	0x08	Software Version	ASCII	
9	0x09	Hardware Version		
			8:	$\begin{array}{\|l} \text { Module 750- } \\ 672 \end{array}$
			16:	$\begin{array}{\|l\|} \text { Module 750- } \\ 673 \end{array}$
11	0x0B	CompilationMonth	mmmm ASCII	
12	0x0C	CompilationDayYear	ddyy ASCII	
13	0x0D	Compilationtime	hhmm ASCII	
15	0x0F	Expecting configuration version		
16	0x10	Version of current configuration		
20	0x14	Current frequency prescaler		
21	0x15	Prior overcurrent load $0 \ldots 254$; when 255 is reached, the error message PARTMODL_CURRENT_TIME is issued.	0 ... 255	
22	0x16	0		
24	0x18	Set point position of travel generator		
25	0x19	Set point speed of travel generator		
30	0x1E	Last target position/target speed		
31	0x1F	Current acceleration factor		
32	0x20	Position error		
37	0x25	0		
38	0x26	0		
39	0x27	0		
40	0x28	Current run command	internal	
41	0x29	Run program command counter		

WAGO-I/O-SYSTEM 750

Index		Variable	Value
Dec.	Hex.		
43	0x2B	Setpoint value speed	
44	0x2C	Maximum speed	
45	0x2D	Final speed	
46	0x2E	0	
47	0x2F	Stop delay	
49	0x31	Actual acceleration	
50	0x32	Actual delay	
51	0x33	Acceleration modification (travel, time)	
52	0x34	Delay modification (travel, time)	
53	0x35	Ramp mode	
54	0x36	Maximum speed	internal
55	0x37	Current speed prescaler	
56	0x38	Actual current factor	
62	0x3E	0	
63	0x3F	0	
88	0x58	0	
89	0x59	0	
90	0x5A	0	
91	0x5B	State variable Filter 1	
92	0x5C	State variable Filter2	
93	0x5D	State variable Filter3	
94	0x5E	State variable Filter4	
95	0x5F	State variable Filter5	
96	0x60	State variable Filter6	
97	0x61	State variable Filter7	
98	0x62	State variable Filter8	
99	0x63	0	
1024	0x400	Time since TMS program start	[ms]
1025	0x401	Actual position (measured value)	[user unit]
1026	0x402	Actual output frequency	[user unit]
1027	0x403	Content of rapid state variables	
1028	0x404	State of signal processing controller	
1029	0x405	0	

Index		Variable		Value
Dec.	Hex.			
1030	0x406	TMS enabling block		
		Bit 0:	ARM enabling	
		Bit 1:	Overcurrent	
		Bit 2:	Error acknowledgement still present	
		Bit 3:	Error	
		Bit 4:	Reset not yet completed	
		Bit 5:	Incomplete TMS parameters	
		Bit 6:	Faulty intermediate circuit voltage	
		Bit 7:	24 V faulty	
		Bits 8 - 15:	Reserved	
1031	0x407	0		
1032	0x408	Software Version		ASCII
1033	0x409	Position of last Z pulse		Incremental encoder increments
1034	0x40A	0		
1035	0x40B	CompilationMonth		mmmm ASCII
1036	0x40C	CompilationDayYear		ddyy ASCII
1037	0x40D	Compilationtime		hhmm ASCII
1038	0x40E	0		
1043	0x413	0		
1044	0x414	Switching frequency, maximum value since enabling		
1045	0x415	Switching frequency, current value		
1046	0x416	Output stage temperature		$\left[{ }^{\circ} \mathrm{C} * 0.1\right]$
1047	0x417	24 V voltage		[$\mathrm{V}^{*} 0.1$]
1048	0x418	Intermediate circuit voltage		[$\mathrm{V}^{*} 0.1$]
1049	0x419	Rotational speed measured value, scaled in microsteps, parameterized with SpeedMeasureTimeV and SpeedMeasureTimeOutV		
1050	0x41A	Rotational speed, absolute frequency, parameterized with SpeedMeasureTimeA and SpeedMeasureTimeOutA		[mHz]
1051	0x41B	Absolute position, incremental encoder increments		
1052	0x41C	Mechanical angle rotation of motor, incremental encoder increments		$0 \ldots$ EncoderResolution
1053	0x41D	Electric angle of commutation		$\begin{aligned} & 0 \ldots 0 x F F F F= \\ & 0 \ldots 360^{\circ} \end{aligned}$

WAGO-I/O-SYSTEM 750
I/O Modules

Index		Variable	Value
Dec.	Hex.		
1057	0×421	Current setpoint	$[\% * 0.1]$
1058	0×422	0	
1052	0×426	0	
1059	$0 \times 42 \mathrm{D}$	Rotational speed error	
1060	$0 \times 42 \mathrm{E}$	Position error	

WAGO Kontakttechnik GmbH \& Co. KG
Postfach 2880 • D-32385 Minden Hansastraße 27 • D-32423 Minden
Telefon: $0571 / 887-0$
Telefax: $0571 / 887-169$
E-Mail: info@wago.com
Internet: http://www.wago.com

