MPS-G with 2 / 3 switching points and IO-Link (up to 16 switching points) \& diagnostic function Magnetic cylinder sensors

SICK

Sensor Intelligence.

Described product

MPS-G

Manufacturer

SICK AG
Erwin-Sick-Str. 1
79183 Waldkirch
Germany

Legal information

This work is protected by copyright. Any rights derived from the copyright shall be reserved for SICK AG. Reproduction of this document or parts of this document is only permissible within the limits of the legal determination of Copyright Law. Any modification, abridgment or translation of this document is prohibited without the express written permission of SICK AG.

The trademarks stated in this document are the property of their respective owner.
© SICK AG. All rights reserved.

Original document

This document is an original document of SICK AG.

Contents

1 About this document. 5
1.1 Information on the operating instructions. 5
1.2 Scope 5
1.3 Explanation of symbols 5
1.4 Further information 6
1.5 Customer service. 6
2 Safety information. 7
2.1 Intended use. 7
2.2 Improper use 7
2.3 Limitation of liability. 7
2.4 Requirements for skilled persons and operating personnel 7
2.5 Hazard warnings and operational safety. 8
3 Product description 9
3.1 Product ID 9
3.1.1 Type label 9
3.1.2 Device view. 9
3.2 Product characteristics 10
3.2.1 Product features 10
3.3 Operating principle. 11
3.3.1 Principle of operation 11
3.3.2 Detection range. 11
3.3.3 Position output. 12
3.3.4 Switching behavior after Manual Teach of up to 3 switching points. 12
3.3.5 Switching behavior after Dynamic Teach of 2 switching points 13
3.3.6 Switching behavior after Dynamic Teach of 3 switching points. 15
4 Transport and storage 18
4.1 Transport 18
4.2 Transport inspection. 18
4.3 Storage 18
5 Mounting 19
5.1 Mounting requirements. 19
5.2 Optional accessories 19
5.3 Mounting 19
6 Electrical installation 20
6.1 Safety 20
6.1.1 Notes on electrical installation 20
6.1.2 Wiring instructions 20
6.2 Connections 22
6.2.1 Pin assignment/Connection diagram + wire colors. 22
6.3 Connecting the supply voltage 22
7 Commissioning 24
7.1 Overview of commissioning steps 24
7.2 Positioning on drive 24
7.3 Commissioning the sensor for the first time 24
8 Operation 26
8.1 General notes on operation 26
8.2 Operating and status indicators 26
8.2.1 Control element. 26
8.2.2 Status indicators 27
8.3 Teach-in mode. 28
8.3.1 Dynamic Teach 29
8.3.2 Manual Teach 31
8.4 Diagnostic function 35
8.4.1 Vibration analysis 36
8.4.2 Position monitoring 36
8.4.3 Temperature measurement 37
8.4.4 Maximum acceleration 37
9 Process data structure 38
10 Troubleshooting. 39
11 Maintenance 40
12 Decommissioning 41
12.1 Replace device 41
12.2 Disassembly and disposal 41
12.3 Returning devices 41
13 Technical data 42
13.1 Dimensional drawing 43
14 Glossary 45
15 Annex 48
15.1 Teach routine at a glance 48
15.2 EU declaration of conformity and certificates 49

1 About this document

1.1 Information on the operating instructions

These operating instructions provide important information on how to use sensors from SICK AG.

Prerequisites for safe work are:

- Compliance with all safety notes and handling instructions supplied.
- Compliance with local work safety regulations and general safety regulations for sensor applications.

The operating instructions are intended to be used by qualified personnel and electrical specialists.

NOTE
Read these operating instructions carefully before starting any work on the sensor, in order to familiarize yourself with the sensor and its functions.

The instructions constitute an integral part of the product and are to be stored in the immediate vicinity of the sensor so they remain accessible to staff at all times. If the sensor is passed on to a third party, these operating instructions should be handed over with it.

These operating instructions do not provide information on operating the machine in which the sensor is integrated. For information about this, refer to the operating instructons of the particular machine.

1.2 Scope

These operating instructions are used for incorporating a sensor into a customer system. Step-by-step instructions are given for all the actions required.

These instructions apply to all available device variants of the sensor.
Available device variants are listed on the online product page.

- www.sick.com/mps-g

Commissioning is described using one particular device variant as an example.

Simplified device designation in the document

In the following, the sensor is referred to in simplified form as "MPS-G".

1.3 Explanation of symbols

Warnings and important information in this document are labeled with symbols. The warnings are introduced by signal words that indicate the extent of the danger. These warnings must be observed at all times and care must be taken to avoid accidents, personal injury, and material damage.

DANGER

... indicates a situation of imminent danger, which will lead to a fatality or serious injuries if not prevented.

WARNING
... indicates a potentially dangerous situation, which may lead to a fatality or serious injuries if not prevented.

CAUTION

... indicates a potentially dangerous situation, which may lead to minor/slight injuries if not prevented.

NOTICE

... indicates a potentially harmful situation, which may lead to material damage if not prevented.

NOTE

... highlights useful tips and recommendations as well as information for efficient and trouble-free operation.

1.4 Further information

NOTE

All the documentation available for the sensor can be found on the online product page at:

- www.sick.com/mps-g

The following information is available for download there:

- Type-specific online data sheets for device variants, containing technical data and dimensional drawings
- EU declaration of conformity for the product family
- Dimensional drawings and 3D CAD dimension models in various electronic formats
- These operating instructions, available in English and German, and in other languages if necessary
- Other publications related to the sensors described here
- Publications dealing with accessories
- IO-Link driver files and parameter descriptions

$1.5 \quad$ Customer service

If you require any technical information, our customer service department will be happy to help. To find your representative, see the final page of this document.

NOTE

Before calling, make a note of all type label data such as type code etc. to ensure faster processing.

2 Safety information

2.1 Intended use

The sensor from the MPS-G product family is an intelligent, magnetic position sensor. It is used for non-contact detection of the piston stroke of pneumatic drives with axially magnetized permanent magnets.

SICK AG assumes no liability for losses or damage arising from the use of the product, either directly or indirectly. This applies in particular to use of the product that does not conform to its intended purpose and is not described in this documentation.

2.2 Improper use

- The sensor does not constitute a safety-relevant device according to the EC Machinery Directive (2006/42/EC).
- The sensor must not be used in explosion-hazardous areas.
- Any other use that is not described as intended use is prohibited.
- Any use of accessories not specifically approved by SICK AG is at your own risk.
- The sensor is not suitable for outdoor applications.

NOTICE

Danger due to improper use!
Any improper use can result in dangerous situations.
Therefore, take note of the following information:

- The sensor should be used only in line with intended use specifications.
- All information in these operating instructions must be strictly complied with.

2.3 Limitation of liability

Applicable standards and regulations, the latest state of technological development, and our many years of knowledge and experience have all been taken into account when assembling the data and information contained in these operating instructions. The manufacturer accepts no liability for damage caused by:

- Failing to observe the operating instructions
- Improper use
- Use by untrained personnel
- Unauthorized conversions
- Technical modifications
- Use of unauthorized spare parts, consumables, and accessories

With special variants, where optional extras have been ordered, or owing to the latest technical changes, the actual scope of delivery may vary from the features and illustrations shown here.

2.4 Requirements for skilled persons and operating personnel

WARNING
Risk of injury due to insufficient training.
Improper handling of the sensor may result in considerable personal injury and material damage.

- All work must only ever be carried out by the stipulated persons.

The operating instructions state the following qualification requirements for the various areas of work:

- Instructed personnel have been briefed by the operating entity about the tasks assigned to them and about potential dangers arising from improper action.
- Skilled personnel have the specialist training, skills, and experience, as well as knowledge of the relevant regulations, to be able to perform tasks assigned to them and to detect and avoid any potential dangers independently.
- Electricians have the specialist training, skills, and experience, as well as knowledge of the relevant standards and provisions to be able to carry out work on electrical systems and to detect and avoid any potential dangers independently. In Germany, electricians must meet the specifications of the BGV A3 Work Safety Regulations (e.g., Master Electrician). Other relevant regulations applicable in other countries must be observed.

The following qualifications are required for various activities:

Activities	Qualification
Mounting, maintenance	- Basic practical technical training - Knowledge of the current safety regulations in the workplace
Electrical installation, device replacement	- Practical electrical training - Knowledge of current electrical safety regulations - Knowledge of the operation and control of the devices in their particular application
Commissioning, configuration	- Basic knowledge of the design and setup of the described connections and interfaces - Basic knowledge of data transmission - Knowledge of the operation and control of the devices in their particular application
Operation of the devices in their particular application	- Knowledge of the operation and control of the devices in their particular application - Knowledge of the software and hardware environment in the application

2.5 Hazard warnings and operational safety

Please observe the safety notes and the warnings listed here and in other chapters of these operating instructions to reduce the possibility of risks to health and avoid dangerous situations.

3 Product description

3.1 Product ID

3.1.1 Type label

The type label gives information for identification of the sensor.

Figure 1: Type label
(1) Part number
(2) Name of the product family
(3) Production date (yyww)
(4) 2D code: www.sick.com/part number

3.1.2 Device view

Figure 2: Operating elements and status indicators
(1) Fixing screw, size 1.3 (Tightening torque $\mathrm{M}_{\mathrm{A}}=0.1 \mathrm{Nm}$)
(2) Orientation of $x-y-z$ axis
(3) Physical zero position
(4) Cylinder type marking (S = SMC/BIMBA/Schunk/PHD; F = FESTO/ZIMMER)
(5) Sensor head
(6) Operating element
(7) $3 \times$ LED indicators
(8) Teach-in button

3.2 Product characteristics

3.2.1 Product features

The MPS-G with 2 / 3 digital switching points and IO-Link (up to 16 switching points) is used either as a magnetic cylinder sensor for non-contact detection of 2 end positions or intermediate positions (up to 3 individually adjustable switching points in one housing) or via IO-Link as a position sensor for non-contact linear position measurement mainly in pneumatic cylinders, grippers and slides.

When using IO-Link, up to 16 switching points can also be used and additional diagnostic data such as temperature, orientation, vibration and max. acceleration can be recorded and output.

Target application

- Double end position detection via 2 digital switching points \rightarrow Substitute for two individual cylinder switches
- Detection of 3 positions via 3 digital switching points, e.g. for gripper process (open without object / object gripped / closed without object) \rightarrow Substitute for three individual cylinder switches
- Position measurement for short stroke in systems with IO-Link
- Detection of 16 positions via 16 switching points, e.g. for gripper process (gripping of objects of different sizes)
- Detection of data for diagnostics such as temperature, max. acceleration, vibration and position in systems with IO-Link

Mechanical standard variants

The mechanical standard variants differ in the geometry of the sensor head, the length of the connection cable between the head and control panel, the length of the connecting cable between the control panel and connection and in the connection.

Figure 3: MPS-G structure
(1) Sensor head:

Festo slot (F)
SMC slot (S)
(2) Head / Control panel connection cable
(3) Sensor connecting cable
(4) Sensor connection

Table 1: Mechanical variants

Part number	Type desig- nation	Sensor head	Connec- tion cable	Functional scope (output)	Connecting cable
1108681	MPS-G50 ...	F	0.1 m	$2 \mathrm{Q}+$ IO-Link + MEMS + temp	$0.5 \mathrm{~m}+\mathrm{M} 8$ knurled screw
1108682	MPS-G50 \ldots	S	0.1 m	$2 \mathrm{Q}+$ IO-Link + MEMS + temp	$0.5 \mathrm{~m}+\mathrm{M} 8$ knurled screw

3.3 Operating principle

3.3.1 Principle of operation

The MPS-G determines the position of an encoder magnet via a row of 2 sensor elements located in the sensor head.

Axially and diametrically magnetized magnets can be detected since the two sensor elements measure the field strength in both the X - and Y -direction.

(1) Sensor element 1
(2) Sensor element 2
(3) Axially magnetized magnet
(4) Diametrically magnetized magnet

3.3.2 Detection range

The sensor is designed for a detection range of 50 mm . The zero point / physical zero position is marked with arrows on the sensor head and is located roughly at the center point of the sensor. From the zero point, -25 mm are measured to the cable and +25 mm to the fixing screw.

NOTE

The maximum detection range is 60 mm . The actual detection range can vary and depends on the drive.

Figure 4: Detection range

[^0]
3.3.3 Position output

The sensor can output a linearized position in a detection range of approx. 50 mm (depends on the drive).

When leaving the detection range, value 32,767 or $-32,767$ digits ${ }^{1)}$ is displayed.

Figure 5: Zero point / Physical zero position
(1) Zero point / Physical zero position
(2) Positive positions
(3) Negative positions
(4) Sensor detection range: -3,000 digits ... 3,000 digits
(5) Piston position
(6) Sensor position output

3.3.4 Switching behavior after Manual Teach of up to 3 switching points

Switching behavior after Manual Teach is as follows per switching point during operation:

Figure 6: Switching behavior after Manual Teach
(1) Hysteresis
(2) Width of the switching point
(3) Position

There is no Dynamic Pilot during manual teach-in of the switching points. The switching point width is 2 mm according to the factory setting and can be adjusted via the Teach menu (1-5 mm).

3.3.5 Switching behavior after Dynamic Teach of 2 switching points

If the sensor, during Dynamic Teach, detects teach $2 \times$ piston status $v=0,2$ switching points are set.

NOTE

Dynamic Teach and Dynamic Pilot only start working from a speed of $v>25 \mathrm{~mm} / \mathrm{s}$.

Example: Arrangement of switching points for dynamic teach-in of 2 switching points on a pneumatic cylinder

The 2 switching points are always arranged as follows during dynamic teach-in: Qint1 lies in the direction of the cable outlet and Qint2 in the direction of the sensor fixing screw. It does not matter which position is approached first.

Table 2: Switching behavior with 2 switching points

Switching behavior after Dynamic Teach of 2 switching points is the following during operation:

(1) Max. range of movement of drive
(2) Tolerance
(3) Hysteresis
(4) Requirement for Qint2 HIGH:
$\rightarrow \mathrm{v}=0$
\rightarrow within the tolerance
(6) Requirement for Qint1 HIGH:
$\rightarrow v=0$
\rightarrow within the tolerance
(7) Position
(8) Direction of magnet movement
3.3.6 Switching behavior after Dynamic Teach of 3 switching points

If the sensor, during Dynamic Teach, detects teach $3 \times$ piston status $v=0,3$ switching points are set.

Example: Arrangement of switching points for dynamic teach-in of 3 switching points on a pneumatic internal or external gripper

The switching points are assigned as follows:
Qint1 = idle
Qint2 = object
Qint3 = noobject
That is why the arrangement depends on whether an internal or external gripper is used.

1. External gripper:

Table 3: External gripper

Gripper open without object idle	Gripper closed with object object	Gripper open without object idle	Gripper closed without object noobject	Gripper open without object idle

After the teach-in process, the Qints are assigned as follows:

- Qint1 gripper open without object (idle)
- Qint2 gripper closed with object (object)
- Qint3 gripper closed without object (noobject)

1. Internal gripper:

Table 4: Internal gripper

Gripper open with object	Gripper closed without object idle	Gripper open without object noobject	Gripper closed without object idle	Gripper open with object object

After the teach-in process, the Qints are assigned as follows:

- Qint1 gripper closed without object (idle)
- Qint2 gripper open with object (object)
- Qint3 gripper open without object (noobject)

Switching behavior after Dynamic Teach of 3 switching points is the following during operation:

(1) Max. range of movement of drive
(2) Tolerance
(3) Hysteresis
(4) Requirement for Qint3 HIGH:
$\rightarrow \mathrm{v}=0$
(5) $\quad \rightarrow$ within the tolerance
$\rightarrow \mathrm{v}=0$
\rightarrow within the tolerance
(6) Requirement for Qint1 HIGH:
$\rightarrow \mathrm{v}=0$
\rightarrow within the tolerance
(7) Position
(8) Direction of magnet movement

4 Transport and storage

4.1 Transport

For your own safety, please read and observe the following notes:

NOTE

Damage to the sensor due to improper transport.

- The device must be packaged for transport with protection against shock and damp.
- Transport should be performed by specialist staff only.
- The utmost care and attention is required at all times during unloading and transportation on company premises.
- Note the symbols on the packaging.
- Do not remove packaging until immediately before you start mounting.

4.2 Transport inspection

Immediately upon receipt at the receiving work station, check the delivery for completeness and for any damage that may have occurred in transit. In the case of transit damage that is visible externally, proceed as follows:

- Do not accept the delivery or only do so conditionally.
- Note the scope of damage on the transport documents or on the transport company's delivery note.
- File a complaint.

NOTE

Complaints regarding defects should be filed as soon as these are detected. Damage claims are only valid before the applicable complaint deadlines.

4.3 Storage

Store the device under the following conditions:

- Recommendation: Use the original packaging.
- Do not store outdoors.
- Store in a dry area that is protected from dust.
- To allow any residual dampness to evaporate, do not package in airtight containers.
- Do not expose to any aggressive substances.
- Protect from sunlight.
- Avoid mechanical shocks.
- Storage temperature: see "Technical data", page 42.
- Relative humidity: see "Technical data", page 42.

5 Mounting

5.1 Mounting requirements

- Comply with technical data such as the permitted ambient conditions for operation of the sensor (e.g., temperature range, EM interference), see "technical data", page 42.
- Protect the sensor from direct sunlight.
- Only mount sensor with the intended accessories.

Mounting location

When selecting the mounting location, the following factors must be considered:

- The mounting location must be as free from (electro)magnetic disturbance fields as possible

5.2 Optional accessories

Table 5: Optional accessories

Part number	Designation
4107585	Control panel mounting
4106971	T-slot adapter

$5.3 \quad$ Mounting

Insert sensor into the slot from above. The PWR LED ${ }^{2)}$ lights up green.
(1)

(2)

(3)

(1) Insert sensor
(2) Turn sensor
(3) Tighten screws (tightening torque max. 0.1 Nm)

6 Electrical installation

6.1 Safety

6.1.1 Notes on electrical installation

CAUTION

Danger due to incorrect supply voltage!
An incorrect supply voltage may result in injuries from electric shocks and/or damage to the device.

- Only operate the sensor with safety/protective extra-low voltage (SELV/PELV).

NOTICE

Sensor damage or unpredictable operation due to working with live parts.
Working with live parts may result in unpredictable operation.

- Only carry out wiring work when the power is off.
- Only connect and disconnect electrical connections when the power is off.
- The electrical installation must only be performed by electrically qualified personnel.
- Standard safety requirements must be observed when working on electrical systems!
- Only switch on the supply voltage for the device when the connection tasks have been completed and the wiring has been thoroughly checked.
- When using extension cables with open ends, ensure that bare wire ends do not come into contact with each other (risk of short-circuit when supply voltage is switched on!). Wires must be appropriately insulated from each other.
- Wire cross-sections in the supply cable from the user's power system must be designed in accordance with the applicable standards. When this is being done in Germany, observe the following standards: DIN VDE 0100 (Part 430) and DIN VDE 0298 (Part 4) and/or DIN VDE 0891 (Part 1).
- Circuits connected to the device must be designed as SELV circuits (SELV = Safety Extra Low Voltage).
- Protect the device with a separate fuse at the start of the supply circuit.

The IP enclosure rating for the sensor is only achieved if the connected cable is completely screwed in.

6.1.2 Wiring instructions

NOTE

Pre-assembled cables can be found online at:

- www.sick.com/mps-g

Please observe the following wiring instructions:

- During installation, pay attention to the different cable groups. The cables are grouped into the following four groups according to their sensitivity to interference or radiated emissions:
- Group 1: Cables very sensitive to interference, such as analog measuring cables
- Group 2: Cables sensitive to interference, such as sensor cables, communication signals, bus signals
- Group 3: Cables which are a source of interference, such as control cables for inductive loads, motor brakes
- Group 4: Cables which are powerful sources of interference, such as output cables from frequency inverters, welding system power supplies, power cables
- Cables in groups 1, 2 and 3, 4 must be crossed at right angles, see figure 7 .
- Cables in groups 1, 2 and 3, 4 must be routed in different cable channels or metallic separators must be used, see figure 8 and see figure 9. This applies particularly where cables of devices with a high level of radiated emission, such as frequency converters, are laid parallel to sensor cables.

Figure 7: Cross cables at right angles

Figure 8: Ideal laying - Place cables in different cable channels

Figure 9: Alternative laying - Separate cables with metallic separators

NOTE

Prevent equipotential bonding currents via the cable shield with a suitable earthing method, see "Safety", page 20.

6.2 Connections

6.2.1 Pin assignment/Connection diagram + wire colors

MPS-GxxxxxxxAxxxxxxxxxxxxxxxxx: Open cable end
Table 6: Pin assignment for male connector, M8, A-coded, 4-pin

PIN	Connection	Pin assignment
1	BN	$+(\mathrm{L}+)$
2	WH	Q 2
3	BU	$-(\mathrm{M})$
4	BK	Q 1
$\mathbf{4}$		

MPS-GxxxxxxxCxxxxxxxxxxxxxxxxx / MPS-GxxxxxxxDxxxxxxxxxxxxxxxxxx: M8 connection
Table 7: Pin assignment for male connector, M8, A-coded, 4-pin

PIN	Connection	Pin assignment
1	BN	$+(\mathrm{L}+)$
2	WH	Q 2
3	BU	$-(\mathrm{M})$
4	BK	$\mathrm{Q} 1 / \mathrm{IO}$-Link
$\mathbf{4}$		
\longrightarrow		

MPS-GxxxxxxxExxxxxxxxxxxxxxxxxx: M12 connection
Table 8: Pin assignment for male connector, M12, A-coded, 4-pin

PIN	Connection	Pin assignment
1	BN	$+(\mathrm{L}+)$
2	WH	Q 2
3	BU	$-(\mathrm{M})$
4	BK	$\mathrm{Q} 1 /$ IO-Link
$\mathbf{4}$		

6.3 Connecting the supply voltage

The sensor must be connected to a voltage supply with the following properties:

- Supply voltage DC 10 V ... 30 V (SELV/PELV as per currently valid standards)
- Electricity source with at least 5 W power

Protecting the supply cables

To ensure protection against short-circuits/overload in the customer's supply cables, the wire cross-sections used must be appropriately selected and protected.

The following standards must be observed in Germany:

- DIN VDE 0100 (part 430)
- DIN VDE 0298 (part 4) and/or DIN VDE 0891 (part 1)

7 Commissioning

7.1 Overview of commissioning steps

- Connect the voltage supply.
- Commission the sensor using the factory settings.
- Configure the sensor.

7.2 Positioning on drive

Different stroke lengths must be differentiated when positioning the sensor on the drive to achieve the best possible performance.

- \quad Stroke > 5 mm :

The sensor head must be positioned in the center of the range of movement so that the minimum and maximum measured position have the same value. On a drive with a range of movement of, for example, 30 mm , the minimum position must be -15 mm , the maximum position 15 mm .
The optimal position of the sensor can, for example, be determined by recording the position value or by placing an auxiliary magnet in the slot: The piston is then moved into the end positions and the respective position of the auxiliary magnet is marked. The center between the two marks is then the optimal position for the sensor head (arrow on the sensor head should be at this position).

(1) Zero point
(2) Same distance in both directions

- Stroke < 5 mm :

Mount the sensor head so that the magnet only moves in half of the measuring range and, if possible, only positive or negative positions are output. However, the value for the position should be no greater 8 mm .

Zero point
Sensor mounted laterally, range of movement in one direction

7.3 Commissioning the sensor for the first time

For optimal sensor performance, move the drive through the entire range of movement of the drive roughly $5 x$. Not until teach-in is complete is the complete accuracy (minimal linearity error, correct display of measuring range) achieved.

If switching points are taught before teach-in is complete, these change their position during the teach-in process.

The teach-in process can be accelerated by running an Application Reset via IO-Link after mounting of the sensor. The sensor then only needs about two strokes to teach in the drive with sufficient accuracy.

8 Operation

8.1 General notes on operation

Teach possible using teach-in button.

NOTE

The user is responsible for the correct teach process.

IO-Link

In addition to manual configuration, the sensor can also be configured using IO-Link. A detailed list of IO-Link functions can be found in the leaflet and can be downloaded at www.sick.com/mps-g.

You can find the IODD file at www.sick.com/mps-g.
The following settings can be made and parameters read out via IO-Link:

- Configuration of up to 16 switching points (Qints)
- Position determination in mm
- Offset:
- Repeatability
- Pneumatic Actuator Diagnosis: Read out of the following data:
- Cycle counter
- Cylinder stroke in [mm]
- Total cylinder travel in [m]
- Cycle time in [ms]
- Stroke time in [ms] (stroke time in positive direction / stroke time in negative direction)
- Stroke speed in [m/s] (stroke speed in positive direction / stroke speed in negative direction)
- Dwell time in start position in [ms]
- Dwell time in end position in [ms]
- Currently measured field strength per sensor element in [mT]
- Measured peak value of the field strength per sensor element in [mT]
- Condition Monitoring: Read out of the following data:
- Temperature
- Max. acceleration
- Vibration
- Location

8.2 Operating and status indicators

8.2.1 Control element

The following settings can be made via the teach-in button.

- Definition of up to 3 switching points (digital outputs) via Dynamic Teach function
- Manual definition of 1 to 3 switching points (digital outputs)
- Adjustment of overrun distance per switching point (1-5 mm) (after Manual Teach)
- Deactivation of all switching points

8.2.2 Status indicators

3 LEDs are arranged on the control panel. The two outer LEDs light up yellow and the center LED in green.

The table below describes the individual function displays. The actual behavior of the LEDs during operation represents a combination of these function displays.

Table 9: Function of the LEDs

Sensor condi-	LED 1 (Q1)		LED 2 (PWR)		LED 3 (Q2)	
	Display	Meaning	Display	Meaning	Display	Meaning
SIO^{1}	Lights up	Q1 high	Lights up	Power ok	Lights up	Q2 high
	O Does not light up	Q1 low			O Does not light up	Q2 low
IO-Link ${ }^{2}$	Lights up	Q1 high	(1) Flash- ing	IO-Link active	Lights up	Q2 high
	O Does not light up	Q1 low			O Does not light up	Q2 low
Error	No error display via LEDs					
Teach	This table only lists the LED behavior during operation. The LED behavior during teach-in can be found in chapter 8.3.					

If LED 1 (Q1), LED 2 (PWR) and LED 3 (Q3) light up at the same time, Q3 is active.

- During position measurement via IO-Link, only LED 2 (PWR) flashes
- Up to 16 switching points can be taught in via IO-Link. Only the first 3 switching points are shown via LEDs as in SIO mode.

8.3 Teach-in mode

Table 10: Teach behavior

For dynamic teach-in of 2 switching points via Dynamic Teach, it is assumed that the end positions of a piston should be detected in a pneumatic cylinder. If the 2 switching points are to be placed randomly within the measuring range, we recommend teaching in the 2 switching points manually via Manual Teach.

For dynamic teach-in of 3 switching points via Dynamic Teach, it is assumed that 3 statuses of a pneumatic gripper should be detected during the gripping process.

- Status 1 "idle": Gripper open without object (external gripper) / Gripper closed without object (internal gripper)
- Status 2 "object": Gripper closed without object (external gripper) / Gripper open with object (internal gripper)
- Status 3 "noobject": Gripper closed without object (external gripper) / Gripper open without object (external gripper)

If the 3 switching points are to be placed randomly within the measuring range, we recommend teaching in 3 switching points manually via Manual Teach.

8.3.1 Dynamic Teach

Dynamic Teach is used to have the sensor automatically set the switching points.
The sensor detects the movement stops and then assigns the respective switching points to the found positions. (Taking into account the set switching point width, the positions must be at least 1 mm apart to be detected as two different positions).

The initial position of the piston when Dynamic Teach starts is NOT seen as the first stop!

NOTE

The magnet must be moved at a speed greater than $0.025 \mathrm{~m} / \mathrm{s}$ so the Dynamic Teach works correctly.

Regular Operation

LED behaviour

SS: Slow blink

> * Qint = switch point

Sí Inverted slow blink
(f) fic Fast blink
ffi: fifi: Inverted fast blink
(x. Tallymark blink

Figure 10: Dynamic Teach teach routine
Flashing tally sheet:
$1 \mathrm{~mm}=1 \times$ brief flash
$2 \mathrm{~mm}=2 \times$ brief flashes
$3 \mathrm{~mm}=3 x$ brief flashes
$4 \mathrm{~mm}=4 \times$ brief flashes
$5 \mathrm{~mm}=1 \times$ long flash

8.3.2 Manual Teach

Manual Teach is used to manually teach in up to three switching points within the measuring range using the teachin button. The three switching points are taught in separately from each other (taking into account the set switching point width, the positions must be at least 1 mm apart to be detected as different positions).

NOTE

After Manual Teach is run, the width of the switching point (see "Switching behavior after Manual Teach of up to 3 switching points", page 12) can be set.

Regular Operation

Finish Teach
\rightarrow Save changes
\rightarrow Exit teach menu
\rightarrow Q1-LED lights up for Qint1, Q2-LED lights up for Qint2, Q1- and Q2-LED light up same time to Qint3

Exit teach menu without changes
\rightarrow Q1-LED lights up for Qint1, Q2-LED lights up for Qint2, Q1- and Q2-LED light up same time to Qint3

LED behaviour
\bigcirc Off
On
(8): Slow blink

Sif: Inverted slow blink
© ${ }^{\text {f }}$ fast blink
gif fill Inverted fast blink
© - Tallymark blink
** switch points can only be adjusted seperately. After adjusting width of one Qint the menu ist left. For adjusting the width of the second and/or third Qint menu has to be entered again.

Figure 11: Manual Teach teach routine
Setting of switching point width:

Regular Operation

LED behaviour

On
SS: Slow blink Sí Inverted slow blink
(f): ff Fast blink
(fil: ffil: Inverted fast blink
X-Tallymark blink
*** width of switch points can only be adjusted seperately. After adjusting width of one Qint the menu ist left. For adjusting the width of the second and/or third Qint menu has to be entered again.
**** width can be adjusted 1 mm steps ($1 \ldots 5 \mathrm{~mm}$). Default setting of width is 2 mm . By pushing the button once width ist increased from 2 to 3 mm (and so on).

Figure 12: Teach routine for switching point width
Flashing tally sheet:
$1 \mathrm{~mm}=1 \times$ brief flash
$2 \mathrm{~mm}=2 \times$ brief flashes
$3 \mathrm{~mm}=3 \times$ brief flashes
$4 \mathrm{~mm}=4 \times$ brief flashes
$5 \mathrm{~mm}=1 \times$ long flash

8.4 Diagnostic function

During the application, the MPS-G Smart Sensor also monitors:

- Cycle count
- Travel time
- Cylinder travel
- Dwell time
- Piston velocity

The individual values are output via the IO-Link interface.

In addition to the actual sensor function, the MPS-G Smart Sensor also delivers valuable information on the status of the machine or the process to detect deviations early on and prevent unplanned system downtime. The diagnostic function of the sensor includes:

- Vibration analysis
- Position monitoring
- Temperature measurement
- Maximum acceleration
- Actuator diagnosis

The individual values are output via the IO-Link interface.

8.4.1 Vibration analysis

The sensor monitors the vibration of critical components in the machine in the time range using characteristic values. All three axes (X, Y and Z) are monitored.
1 RMS
The root mean square or effective value of a vibration is a measure for the energy contained in the vibration. The value can be used to estimate the strength of the vibration.
Can be read out via ISDU 4483 / Index 0x1183
2 Kurtosis
Kurtosis is a dimensionless measured value for the distribution of values in the acceleration signal. The value can be used to estimate the type of vibration measured. For example, a white noise signal has a kurtosis of 3, whereby a sine wave has a kurtosis of 1.5.
Can be read out via ISDU 4495 / Index 0x118F

3 Pulse factor

The pulse factor is the ratio of the maximum absolute value of acceleration to the mean value of these absolute values. The value can be considered an indication of whether brief pulses occur in the acceleration signal which are significantly stronger than the permanent vibration. For example, a pure sine wave has a pulse factor of 1.58; if a much stronger pulse factor is measured for an expected sinusoidal vibration, this is an indication of pulsed faults.
Can be read out via ISDU 4507 / Index 0x119B
The characteristic values are calculated from a block of vibration data. The length of this block is a compromise between the update rate of the characteristic values (shorter block length means more frequent update) and the noise of these values (longer block length means higher averaging and therefore lower noise). The block size can be set via Index 4477 / Index 117D, Subindex 1 in a range of $0.04-0.64$ seconds.

8.4.2 Position monitoring

The sensor makes it possible to monitor its own position or the position of the machine part on which it is mounted.

The current position of the sensor is output as an Euler angle in 1/10,000 rad with the roll and pitch components via ISDU 4455 / Index 0x1167.

By default, roll and pitch are zero when the Z-axis of the sensor is antiparallel to the gravity vector. The output angles specify the torsion of the sensor compared to this zero position according to DIN 9300 / DIN ISO 8855 in $\mathrm{Y} / \mathrm{X}^{\prime}$ sequence (intrinsic) or X / Y (extrinsic).

Instead of the Z-axis, ISDU 4467 / Index 0x1008, Subindex 1 can be used to set another axis as a reference for calculation of roll and pitch. The values $+3,+2$ and +1 hereby represent the Z-axis (default setting, as described above), Y-axis and X-axis in the positive direction and values $-3,-2,-1$ represent the Z-axis, Y-axis and X-axis in the negative direction. Roll and pitch are zero when the selected axis is antiparallel to the gravity vector.

ISDU 4466 / Index 0x1007 can be used to read out which axis is currently antiparallel to the gravity vector in which direction or which alignment is closest to this. As described above, values $+3,+2,+1,-1,-2$ and -3 can occur. By executing Standard Command 161 (i.e. writing value 161 in ISDU 2 / Index 0x02), this value is applied as a setting for the reference axis in ISDU 4467 / Index 0x1008, Subindex 1.
Please note that at a pitch angle of $\pm \pi / 2$ rad or $\pm 90^{\circ}$, the roll angle becomes unstable due to the principle of operation ("Gimbal Lock" effect).

8.4.3 Temperature measurement

The sensor monitors the temperature in the application. It outputs the currently measured temperature as well as the minimum and maximum temperature of "all time" and since the last reset.
The temperature data can be read out via ISDU 4352 / Index 0x1100.

8.4.4 Maximum acceleration

The sensor outputs the maximum acceleration of the three $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ axes in a measuring range of ± 8 g since the last reset (ISDU 4411 / Index 0x113B).

The acceleration with the largest absolute value is output, but with the respective sign of acceleration in order to also determine its direction.

Executing Standard Command 160 (i.e. writing value 160 in ISDU 2 / Index 0x02) resets the maximum acceleration.

$9 \quad$ Process data structure

IO-Link version: 1.1
Process data length 4 bytes

	A00	A70	A71	A72	A73	A75
IO-Link	V1.1					
Process data	2 bytes					4 bytes
	Byte 0: bits 15... 8 Byte 1: bits 7... 0					Byte 0: bits 31... 24 Byte 1: bits 13... 16 Byte 2: bits 15... 8 Byte 3: bits 7... 0
Bit 0 / Data type	$\mathrm{Q}_{\text {L1 }}$ / Boolean					
Bit 1 / Data type	$\mathrm{Q}_{\text {L2 }}$ / Boolean			Qint. 1 / Boolean	$\mathrm{Q}_{\mathrm{L} 2}$ / Boolean	Qint. 1 / Boolean
Bit... / Description / Data type	$\begin{aligned} & 2 \text {... } 15 \text { / } \\ & \text { [empty] } \end{aligned}$	2...15/ [time mea- surement value] / Ulnt 14	2 ... 15 / [counter value] / Ulnt 14	2 ... 15 / [length / speed measurement] / SInt14	$\begin{gathered} 2 \text { / Qint. } \\ 1 / \\ \text { Boolean } \end{gathered}$	2 ... 7 / [empty]
Bit... / Description / Data type					3... 15 / [time measurement value] / Ulnt13	8 ... 31 / [carrier load] / Ulnt 24

10 Troubleshooting

Table 11: Possible error displays via the LEDs

LED indicator/fault pat- tern / Fault pattern	Cause	Measures
Green LED does not light up	No voltage or voltage below the limit values	Check the power supply, check all electrical connections (cables and plug connections)
LED 1 + LED 3: Quick flash- ing	During a teach attempt outside the detection range, no end point is applied	Bring pistons into the detection range of the sensor
	If no or only one end point is found during Dynamic Teach, no end points are applied	Adjust the position so that two end points are found
Sensor position is impre- cise	Mounting position unfavorable	Position sensor head as recom- mended in the operating instructions and run voltage reset
Sensor does not find switching points in Dynamic Pilot / does not switch	Traversing speed of the object is insufficient	Increase traversing speed of the piston or deactivate Dynamic Pilot and manually teach in switching points
Switching points are lost	Sensor was not yet completely taught in to drive	Perform several strokes (> 5) and reset switching points

11 Maintenance

SICK sensors are maintenance-free.
We do, however, recommend that the following activities are undertaken regularly:

- Clean the sensor surfaces
- Check the fittings and plug connectors

No modifications may be made to devices.
Subject to change without notice. Specified product properties and technical data are not written guarantees.

12 Decommissioning

12.1 Replace device

The IO-Link Data Storage can be used to save previous parameters and transmit them to the exchange device. This prevents complete re-parameterization of the exchange device.

12.2 Disassembly and disposal

Disassembling the device

1. Switch off the supply voltage to the device.
2. Detach all connecting cables from the device.
3. If the device is being replaced, mark its position and alignment on the bracket or surroundings.
4. Detach the device from the bracket.

Disposing of the device

Any device which can no longer be used must be disposed of in an environmentally friendly manner in accordance with the applicable country-specific waste disposal regulations.

NOTE

Disposal of batteries, electric and electronic devices

- According to international directives, batteries, accumulators and electrical or electronic devices must not be disposed of in general waste.
- The owner is obliged by law to return this devices at the end of their life to the respective public collection points.
-

This symbol on the product, its package or in this document, indicates that a product is subject to these regulations.

12.3 Returning devices

- Do not dispatch devices to the SICK Service department without consultation.

NOTE

To enable efficient processing and allow us to determine the cause quickly, please include the following when making a return:

- Details of the contact person
- Description of the application
- Description of the fault that occurred

13 Technical data

Table 12: Technical data

Cylinder type	C-slot
Detection zone	$0 \ldots 50 \mathrm{~mm}^{1)}$
Supply voltage U_{B}	$10 \ldots 30 \mathrm{~V} \mathrm{DC}$
Power consumption	$\leq 550 \mathrm{~mW}$
Required magnetic field strength, typ.	$\geq 2 \mathrm{mT}$
overrun distance	can be configured
Hysteresis	can be configured
Time delay before availability	0.15 s
Resolution typ.	$0.01 \mathrm{~mm}^{2}$
Linearity typ.	$0.3 \mathrm{~mm}^{2)}$
Repeatability typ.	$0.05 \mathrm{~mm}^{3)}$
Sampling rate min.	2 kHz
IO-Link	1.1
Enclosure rating	IP 67
Protection class	III
Circuit protection	$\mathrm{A}, \mathrm{B}, \mathrm{D}^{4)}$
Ambient temperature, operation	$-20{ }^{\circ} \mathrm{C} \ldots+70^{\circ} \mathrm{C}$

[^1]
13.1 Dimensional drawing

Figure 13: Dimensional drawing with male connector, M8 knurled

Figure 14: Dimensional drawing with male connector, M12 knurled
(1) Center sensor element
(2) Fixing screw, size 1.3
(3) LED indicator
(4) Teach-in button
(5) Ribs for cable tie
(6) For SMC, Schunk, PHD, Bimba slot (MPS-G50CS...)
(7) For Festo-, Zimmer slot (MPS-G50CF...)
(8) Connection

Table 13: L1 length of sensor head / control panel connection cable

Type code	Connection cable length
MPS-Gxxxxx1xxxxxxxxxxxxxxxxxxx	0.1 m
MPS-Gxxxxx5xxxxxxxxxxxxxxxxxxx	0.5 m

14 Glossary

Currently measured field strength per sensor element	Currently measured field strength for - Sensor element 1 in mT (C1). Sensor element 1 is in the direction of the cable outlet of the sensor. - Sensor element 2 in mT (C2). Sensor element 2 is in the direction of the sensor fixing screw.
Cycle counter	Number of cycles. One cycle corresponds to two strokes: Start position - end position - start position. The start position is the direction of the cable outlet of the sensor. The end position is in the direction of the sensor fixing screw.
Cycle time	Duration of the last cycle in ms. One cycle corresponds to two strokes: Start position - end position - start position. The start position is the direction of the cable outlet of the sensor. The end position is in the direction of the sensor fixing screw.
Cylinder stroke	Measured distance of the last stroke in mm.
Detection range	The detection range describes the maximum physical range in which the sensor can determine a position. The detection range is max. +30 mm and -30 mm around the physical zero position.
Dwell time in end position	Dwell time in end position in ms. The start position is in the direction of the sensor fixing screw.
Dwell time in start position	Dwell time in start position in ms. The start position is the direction of the cable outlet of the sensor.
Dynamic Pilot	Dynamic Pilot sets an additional condition for the switching process during operation: In addition to the condition that the magnet must be located within the tolerance band defined in Dynamic Teach, the speed of the magnet must also be $v=0$ in order to switch on. - 1. Qint switches on when a magnet moves into the tolerance band and $v=0$ for the first time within this tolerance band. - 2. After switching on, Qint remains on as long as the magnet is within the tolerance band and the hysteresis (depending on whether $\mathrm{v}=0$ or $\mathrm{v} \neq 0$). - 3. Qint switches off as soon as the magnet leaves the hysteresis.
Dynamic Teach and Manual Teach	Dynamic Teach and Manual Teach are two different teach options. The teach-in button can be used to execute both Dynamic Teach and Manual Teach. - Dynamic Teach: Dynamic Teach can be used to have the sensor automatically set the end points of the desired measuring range. - Manual Teach: Manual Teach is used to manually teach in the two end points of the measuring range using the teach-in button. Both end points are taught in separately. The teach-in processes are described in detail in chapter 8.3.

Linearity error	The linearity error describes the maximum deviation of the output signal from an ideal straight line. It is measured in millimeters. MPS-G with 2/3 digital switching points and IO-Link (up to 16 switching points): The linearity error is typically 0.5 mm and depends on the measuring range and the drive on which the sen- sor is mounted.
Measuring range	The measuring range can be anywhere inside the detection range. The measuring range must always be completely inside the detec- tion range.
Offset	The offset is added to the position identified by the sensor. Nega- tive position values can be output depending on the positioning of the sensor on the drive. If you do not want this, an offset value can be defined around which all position values are added. Position output = identified position of the sensor + offset value. The offset value is specified in digits. 1 digit corresponds to $10 ~ \mu m . ~$
Peak value of the field strength per sensor ele- ment	Maximum measured field strength - Of sensor element 1 in mT. The value is recalculated every time the element is overrun. Sensor element 1 is in the direction of the cable outlet of the sensor.
- Of sensor element 2 in mT. The value is recalculated every time	
the element is overrun. Sensor element 2 is in the direction of	
the sensor fixing screw.	

Stroke time in positive direction	Duration of the last stroke in the positive direction in ms. The positive direction goes in the direction of the sensor fixing screw. One stroke corresponds to movement in a direction. Direction of movement for extending stroke: End position - start position. The start position is the direction of the cable outlet of the sensor. The end position is in the direction of the sensor fixing screw.
Total cylinder travel	Total piston travel in m.

15 Annex

15.1 Teach routine at a glance

Figure 15: MPS-G IO-Link teach routine

15.2 EU declaration of conformity and certificates

The EU declaration of conformity and other certificates can be downloaded from the Internet at:

- www.sick.com/mps-g

Australia

Phone +61 (3) 94570600 1800334802 - tollfree
E-Mail sales@sick.com.au
Austria
Phone +43 (0) 2236 62288-0
E-Mail office@sick.at
Belgium/Luxembourg
Phone +32 (0) 24665566
E-Mail info@sick.be
Brazil
Phone +55 11 3215-4900
E-Mail comercial@sick.com.br

Canada

Phone +1 905.771.1444
E-Mail cs.canada@sick.com
Czech Republic
Phone +420 234719500
E-Mail sick@sick.cz
Chile
Phone +56 (2) 22747430
E-Mail chile@sick.com

China

Phone +86 2028823600
E-Mail info.china@sick.net.cn

Denmark

Phone +45 45826400
E-Mail sick@sick.dk
Finland
Phone +358-9-25 15800
E-Mail sick@sick.fi
France
Phone +33 164623500
E-Mail info@sick.fr
Germany
Phone +49 (0) 21153010
E-Mail info@sick.de

Greece

Phone +30 2106825100
E-Mail office@sick.com.gr

Hong Kong

Phone +852 21536300
E-Mail ghk@sick.com.hk

Hungary
Phone +36 13712680
E-Mail ertekesites@sick.hu
India
Phone +91-22-6119 8900
E-Mail info@sick-india.com
Israe
Phone +972 9711011
E-Mail info@sick-sensors.com
Italy
Phone +39 02274341
E-Mail info@sick.it
Japan
Phone +81 353092112
E-Mail support@sick.jp

Malaysia

Phone +603-8080 7425
E-Mail enquiry.my@sick.com

Mexico

Phone +52 (472) 7489451
E-Mail mexico@sick.com

Netherlands

Phone +31 (0) 302292544
E-Mail info@sick.nl
New Zealand
Phone +64 94150459 0800222278 - tollfree
E-Mail sales@sick.co.nz

Norway

Phone +47 67815000
E-Mail sick@sick.no
Poland
Phone +48 225394100
E-Mail info@sick.pl

Romania

Phone +40 356-17 1120
E-Mail office@sick.ro
Russia
Phone +7 4952830990
E-Mail info@sick.ru

Singapore

Phone +65 67443732
E-Mail sales.gsg@sick.com

Slovakia
Phone +421 482901201
E-Mail mail@sick-sk.sk

Slovenia

Phone +386 59178849
E-Mail office@sick.si
South Africa
Phone +27 100600550
E-Mail info@sickautomation.co.za
South Korea
Phone +82 2786 6321/4
E-Mail infokorea@sick.com
Spain
Phone +34 934803100
E-Mail info@sick.es

Sweden

Phone +46 101101000
E-Mail info@sick.se
Switzerland
Phone +41 416192939
E-Mail contact@sick.ch

Taiwan

Phone +886-2-2375-6288
E-Mail sales@sick.com.tw
Thailand
Phone +66 26450009
E-Mail marcom.th@sick.com
Turkey
Phone +90 (216) 5285000
E-Mail info@sick.com.tr
United Arab Emirates
Phone +971 (0) 48865878
E-Mail contact@sick.ae
United Kingdom
Phone +44 (0)17278 31121
E-Mail info@sick.co.uk
USA
Phone +1 800.325.7425
E-Mail info@sick.com

Vietnam

Phone +65 67443732
E-Mail sales.gsg@sick.com

Detailed addresses and further locations at www.sick.com

[^0]: (1) Detection range
 (2) Housing length
 (3) Zero point / Physical zero position

[^1]: 1) Deviations are possible depending on the drive.
 2) At $25{ }^{\circ} \mathrm{C}$, the linearity error (maximum deviation) depends on response curve and minimum deviation function.
 3) At $25^{\circ} \mathrm{C}$, repeatability with magnet movement from one direction.
 4) $A=U B$ connections reverse polarity protected
 $B=$ Inputs and outputs reverse polarity protected
 C = Interference suppression
 $D=$ Outputs overcurrent and short-circuit protected
